8 research outputs found
Cluster-assembled metallic glasses
A bottom-up approach to nanofabricate metallic glasses from metal clusters as building blocks is presented. Considering metallic glasses as a subclass of cluster-assembled materials, the relation between the two lively fields of metal clusters and metallic glasses is pointed out. Deposition of selected clusters or collections of them, generated by state-of-the-art cluster beam sources, could lead to the production of a well-defined amorphous material. In contrast to rapidly quenched glasses where only the composition of the glass can be controlled, in cluster-assembled glasses, one can precisely control the structural building blocks. Comparing properties of glasses with similar compositions but differing in building blocks and therefore different in structure will facilitate the study of structure–property correlation in metallic glasses. This bottom-up method provides a novel alternative path to the synthesis of glassy alloys and will contribute to improving fundamental understanding in the field of metallic glasses. It may even permit the production of glassy materials for alloys that cannot be quenched rapidly enough to circumvent crystallization. Additionally, gaining deeper insight into the parameters governing the structure–property relation in metallic glasses can have a great impact on understanding and design of other cluster-assembled materials
Atomic structure of Cu-Zr metallic glass assessed by EXAFS method and molecular dynamics simulations
Local Atomic Order, Electronic Structure and Electron Transport Properties of Cu-Zr Metallic Glasses
Energetic bombardment and defect generation during magnetron-sputter-deposition of metal layers on graphene
In the present work, we elucidate the interplay among energetic bombardment effects in magnetron sputtering and defect generation in two-dimensional (2D) materials. Using deposition of gold (Au) layers on single-layer graphene (SLG) as a model system, we study the effect of pressure-distance (pd) product during magnetron sputtering on the pristine SLG properties. Raman spectroscopy, complemented by X-ray photoelectron spectroscopy, shows that for pd = 8.2 Pa center dot cm, Au layer deposition causes defects in the SLG layer, which gradually diminish and eventually disappear with increasing pd to 82.5 Pa center dot cm. Stochastic and deterministic simulations of the sputtering process, the gas-phase transport, and the interaction of sputtered and plasma species with the substrate surface suggest that defects in SLG primarily emanate from ballistic damage caused by backscattered Ar atoms with energies above 100 eV. With increasing pd, and thereby gas-phase scattering, such high energy Ar species become thermalized and hence incapable of causing atomic displacements in the SLG layer. The overall results of our study suggest that control of backscattered Ar energy is a potential path toward enabling magnetron sputtering for fabrication of multifunctional metal contacts in devices founded upon 2D materials.Peer reviewe