569 research outputs found

    Gaalas/Gaas Solar Cell Process Study

    Get PDF
    Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process

    Evaluation of solar cells and arrays for potential solar power satellite applications

    Get PDF
    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program

    Evaluation of solar cell materials for a Solar Power Satellite

    Get PDF
    Alternative solar cell materials being considered for the solar power satellite are described and price, production, and availability projections through the year 2000 are presented. The chief materials considered are silicon and gallium arsenide

    Thermal design support for the Explorer gamma ray experiment telescope

    Get PDF
    The results of a thermal design definition study for the GSFC Explorer Gamma Ray Experiment Telescope (EGRET) were documented. A thermal computer model of EGRET with 241 nodes was developed and used to analyze the thermal performance of the experiment for a range of orbits, payload orientations and internal power dissipations. The recommended thermal design utilizes a small radiator with an area of 1.78 square foot on the anti-sun side of the mission adaptor and circumferential heat pipes on the interior of the same adaptor to transfer heat from the electronics compartments to the single radiator. Fifty watts of thermostatically controlled heater power are used to control the temperature level to 10 C + or - 20 C inside the insulated dome structure

    Study of process technology for GaAlAs/GaAs heteroface solar cells

    Get PDF
    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt

    Warp-X: a new exascale computing platform for beam-plasma simulations

    Full text link
    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such as the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. The code structure, status, early examples of applications and plans are discussed

    Scaling anomalies in the coarsening dynamics of fractal viscous fingering patterns

    Full text link
    We analyze a recent experiment of Sharon \textit{et al.} (2003) on the coarsening, due to surface tension, of fractal viscous fingering patterns (FVFPs) grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shaw model, a natural model for that experiment, belongs to the same universality class as model B of phase ordering. Two series of numerical simulations with model B are performed, with the FVFPs grown in the experiment, and with Diffusion Limited Aggregates, as the initial conditions. We observed Lifshitz-Slyozov scaling t1/3t^{1/3} at intermediate distances and very slow convergence to this scaling at small distances. Dynamic scale invariance breaks down at large distances.Comment: 4 pages, 4 eps figures; to appear in Phys. Rev.

    Sharp interface limits of phase-field models

    Full text link
    The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for a class of phenomena, that includes order/disorder transitions, spinodal decomposition and Ostwald ripening, dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the ``sharp interface limit'' from phase field models which have interfaces that are diffuse on a length scale ξ\xi. In particular,phase-field equations are mapped onto sharp interface equations in the limits ξκ1\xi \kappa \ll 1 and ξv/D1\xi v/D \ll 1, where κ\kappa and vv are respectively the interface curvature and velocity and DD is the diffusion constant in the bulk. The calculations provide one general set of sharp interface equations that incorporate the Gibbs-Thomson condition, the Allen-Cahn equation and the Kardar-Parisi-Zhang equation.Comment: 17 pages, 9 figure

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
    corecore