79 research outputs found

    Distinguishing forest types in restored tropical landscapes with UAV-borne LIDAR

    Get PDF
    Forest landscape restoration is a global priority to mitigate negative effects of climate change, conserve biodiversity, and ensure future sustainability of forests, with international pledges concentrated in tropical forest regions. To hold restoration efforts accountable and monitor their outcomes, traditional strategies for monitoring tree cover increase by field surveys are falling short, because they are labor-intensive and costly. Meanwhile remote sensing approaches have not been able to distinguish different forest types that result from utilizing different restoration approaches (conservation versus production focus). Unoccupied Aerial Vehicles (UAV) with light detection and ranging (LiDAR) sensors can observe forests` vertical and horizontal structural variation, which has the potential to distinguish forest types. In this study, we explored this potential of UAV-borne LiDAR to distinguish forest types in landscapes under restoration in southeastern Brazil by using a supervised classification method. The study area encompassed 150 forest plots with six forest types divided in two forest groups: conservation (remnant forests, natural regrowth, and active restoration plantings) and production (monoculture, mixed, and abandoned plantations) forests. UAV-borne LiDAR data was used to extract several Canopy Height Model (CHM), voxel, and point cloud statistic based metrics at a high resolution for analysis. Using a random forest classification model we could successfully classify conservation and production forests (90% accuracy). Classification of the entire set of six types was less accurate (62%) and the confusion matrix showed a divide between conservation and production types. Understory Leaf Area Index (LAI) and the variation in vegetation density in the upper half of the canopy were the most important classification metrics. In particular, LAI understory showed the most variation, and may help advance ecological understanding in restoration. The difference in classification success underlines the difficulty of distinguishing individual forest types that are very similar in management, regeneration dynamics, and structure. In a restoration context, we showed the ability of UAV-borne LiDAR to identify complex forest structures at a plot scale and identify groups and types widely distributed across different restored landscapes with medium to high accuracy. Future research may explore a fusion of UAV-borne LiDAR with optical sensors , include successional stages in the analyses to further characterize , distinguish forest types and their contributions to landscape restoration

    Treetop: A Shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists

    Get PDF
    Individual tree detection (ITD) and crown delineation are two of the most relevant methods for extracting detailed and reliable forest information from LiDAR (Light Detection and Ranging) datasets. However, advanced computational skills and specialized knowledge have been normally required to extract forest information from LiDAR.The development of accessible tools for 3D forest characterization can facilitate rapid assessment by stakeholders lacking a remote sensing background, thus fostering the practical use of LiDAR datasets in forest ecology and conservation. This paper introduces the treetop application, an open-source web-based and R package LiDAR analysis tool for extracting forest structural information at the tree level, including cutting-edge analyses of properties related to forest ecology and management.We provide case studies of how treetop can be used for different ecological applications, within various forest ecosystems. Specifically, treetop was employed to assess post-hurricane disturbance in natural temperate forests, forest homogeneity in industrial forest plantations and the spatial distribution of individual trees in a tropical forest.treetop simplifies the extraction of relevant forest information for forest ecologists and conservationists who may use the tool to easily visualize tree positions and sizes, conduct complex analyses and download results including individual tree lists and figures summarizing forest structural properties. Through this open-source approach, treetop can foster the practical use of LiDAR data among forest conservation and management stakeholders and help ecological researchers to further understand the relationships between forest structure and function.The authors thank Nicholas L. Crookston for co‐developing the web‐LiDAR treetop tool, and the two anonymous reviewers for their helpful suggestions on the first version of the manuscript. This study is based on the work supported by the Department of Defence Strategic Environmental Research and Development Program (SERDP) under grants No. RC‐2243, RC19‐1064 and RC20‐1346 and USDA Forest Service (grand No. PRO00031122

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases57^{5–7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data

    Get PDF
    Tropical savanna ecosystems play a major role in the seasonality of the global carbon cycle. However, their ability to store and sequester carbon is uncertain due to combined and intermingling effects of anthropogenic activities and climate change, which impact wildfire regimes and vegetation dynamics. Accurate measurements of tropical savanna vegetation aboveground biomass (AGB) over broad spatial scales are crucial to achieve effective carbon emission mitigation strategies. UAV-lidar is a new remote sensing technology that can enable rapid 3-D mapping of structure and related AGB in tropical savanna ecosystems. This study aimed to assess the capability of high-density UAV-lidar to estimate and map total (tree, shrubs, and surface layers) aboveground biomass density (AGBt) in the Brazilian Savanna (Cerrado). Five ordinary least square regression models esti-mating AGBt were adjusted using 50 field sample plots (30 m × 30 m). The best model was selected under Akaike Information Criterion, adjusted coefficient of determination (adj.R2), absolute and relative root mean square error (RMSE), and used to map AGBt from UAV-lidar data collected over 1,854 ha spanning the three major vegetation formations (forest, savanna, and grassland) in Cerrado. The model using vegetation height and cover was the most effective, with an overall model adj-R2 of 0.79 and a leave-one-out cross-validated RMSE of 19.11 Mg/ha (33.40%). The uncertainty and errors of our estimations were assessed for each vegetation formation separately, resulting in RMSEs of 27.08 Mg/ha (25.99%) for forests, 17.76 Mg/ha (43.96%) for savannas, and 7.72 Mg/ha (44.92%) for grasslands. These results prove the feasibility and potential of the UAV-lidar technology in Cerrado but also emphasize the need for further developing the estimation of biomass in grasslands, of high importance in the characterization of the global carbon balance and for supporting integrated fire management activities in tropical savanna ecosystems. Our results serve as a benchmark for future studies aiming to generate accurate biomass maps and provide baseline data for efficient management of fire and predicted climate change impacts on tropical savanna ecosystems

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity– ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. Please note an (erratum/corrigendum) for this article is available via https://www.pnas.org/doi/10.1073/pnas.220278411
    corecore