371 research outputs found

    High-yield production of nano-lateral size graphene oxide by high-power ultrasonication

    Get PDF
    Nanographene oxide (GOn) constitutes a nanomaterial of high value in the biomedical field. However, large scale production of highly stable aqueous dispersions of GOn is yet to be achieved. In this work, we explored high-power ultrasonication as a method to reduce particle size of GO and characterized the impact of the process on the physicochemical properties of the material. GOn was obtained with lateral dimensions of 99 ± 43 nm and surface charge of -39.9 ± 2.2 mV. High-power ultrasonication enabled an improvement of stability features, particularly by resulting in a decrease of the average particle size, as well as zeta potential, in comparison to GO obtained by low-power exfoliation and centrifugation (287 ± 139 nm; -29.7 ± 1.2 mV). Remarkably, GOn aqueous dispersions were stable for up to 6 months of shelf-time, with a global process yield of 74%. This novel method enabled the production of large volumes of highly concentrated (7.5 mg mL-1) GOn aqueous dispersions. Chemical characterization of GOn allowed the identification of characteristic oxygen functional groups, supporting high-power ultrasonication as a fast, efficient, and productive process for reducing GO lateral size, while maintaining the material’s chemical features.This work was financed by FEDER funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by national funds (PIDDAC) through FCT/MCTES in the framework of the project POCI-01-0145-FEDER-031143, and Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE. Authors would also like to thank the support of i3S Scientific Platforms and respective funding: HEMS, member of the national infrastructure PPBI—Portuguese Platform of Bioimaging: POCI-01-0145-FEDER-022122; and Biointerfaces and Nanotechnology (BN) Laboratory, Portuguese Funds through FCT, UID/BIM/04293/2019. Artur Pinto thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus—Individual Call—[CEECIND/03908/2017]

    Graphene oxide topical administration: Skin permeability studies

    Get PDF
    Nanostructured carriers have been widely used in pharmaceutical formulations for der-matological treatment. They offer targeted drug delivery, sustained release, improved biostability, and low toxicity, usually presenting advantages over conventional formulations. Due to its large surface area, small size and photothermal properties, graphene oxide (GO) has the potential to be used for such applications. Nanographene oxide (GOn) presented average sizes of 197.6 ± 11.8 nm, and a surface charge of -39.4 ± 1.8 mV, being stable in water for over 6 months. 55.5% of the mass of GOn dispersion (at a concentration of 1000 µg mL-1 ) permeated the skin after 6 h of exposure. GOn dispersions have been shown to absorb near-infrared radiation, reaching temperatures up to 45.7¿ C, within mild the photothermal therapy temperature range. Furthermore, GOn in amounts superior to those which could permeate the skin were shown not to affect human skin fibroblasts (HFF-1) morphology or viability, after 24 h of incubation. Due to its large size, no skin permeation was observed for graphite particles in aqueous dispersions stabilized with Pluronic P-123 (Gt–P-123). Altogether, for the first time, Gon’s potential as a topic administration agent and for delivery of photothermal therapy has been demonstrated.This work was financed by FEDER funds through the COMPETE 2020–Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by national funds (PIDDAC) through FCT/MCTES in the framework of the project POCI-01-0145-FEDER-031143, and Base Funding-UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy–LEPABE. Additional funding included FCT/MCTES in the framework of the project “Institute for Research and Innovation in Health Sciences” (UID/BIM/04293/2019). Authors would also like to thank the support of i3S Scientific Platforms and respective funding: HEMS, member of the national infrastructure PPBI–Portuguese Platform of Bioimaging: POCI-01-0145-FEDER-022122; and Biointerfaces and Nanotechnology (BN) Laboratory, Portuguese Funds through FCT, UID/BIM/04293/2019. Artur Pinto thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus-Individual Call–[CEECIND/03908/2017]. Soraia Pinto (SFRH/BD/144719/2019) would like to thank FCT, Portugal for financial support

    Climate change research and policy in Portugal

    Get PDF
    This article offers a review of research and policy on climate change in Portugal and is organized into three main themes: scientific knowledge and assessment of climate change; policy analysis and evaluation; and public engagement. Modern scientific research on meteorology and climatology started in Portugal in the 1950s and a strong community of researchers in climate science, vulnerabilities, impacts, and adaptation has since developed, particularly in the last decade. Nevertheless, there are still many gaps in research, especially regarding the economic costs of climate change in Portugal and costs and benefits of adaptation. Governmental policies with a strong emphasis on mitigation were introduced at the end of the 1990s. As greenhouse gas emissions continued to rise beyond its Kyoto target for 2012, the country had to resort to the Kyoto Flexibility Mechanisms in order to comply. Climate change adaptation policies were introduced in 2010 but are far from being fully implemented. Regarding public engagement with climate change, high levels of concern contrast with limited understanding and rather weak behavioral dispositions to address climate change. Citizens display a heavy reliance on the media as sources of information, which are dominated by a techno-managerial discourse mainly focused on the global level. The final part of the article identifies research gaps and outlines a research agenda. Connections between policy and research are also discussed

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence that elevated temperatures can lead to increased mortality is well documented, with population vulnerability being location specific. However, very few studies have been conducted that assess the effects of temperature on daily mortality in urban areas in Portugal.</p> <p>Methods</p> <p>In this paper time-series analysis was used to model the relationship between mean apparent temperature and daily mortality during the warm season (April to September) in the two largest urban areas in Portugal: Lisbon and Oporto. We used generalized additive Poisson regression models, adjusted for day of week and season.</p> <p>Results</p> <p>Our results show that in Lisbon, a 1°C increase in mean apparent temperature is associated with a 2.1% (95%CI: 1.6, 2.5), 2.4% (95%CI: 1.7, 3.1) and 1.7% (95%CI: 0.1, 3.4) increase in all-causes, cardiovascular, and respiratory mortality, respectively. In Oporto the increase was 1.5% (95%CI: 1.0, 1.9), 2.1% (95%CI: 1.3, 2.9) and 2.7% (95%CI: 1.2, 4.3) respectively. In both cities, this increase was greater for the group >65 years.</p> <p>Conclusion</p> <p>Even without extremes in apparent temperature, we observed an association between temperature and daily mortality in Portugal. Additional research is needed to allow for better assessment of vulnerability within populations in Portugal in order to develop more effective heat-related morbidity and mortality public health programs.</p
    corecore