51,402 research outputs found

    New zoarcid fish species from deep-sea hydrothermal vents of the Atlantic

    Get PDF
    International Ridge-Crest Research: Biological Studies. Vol. 10(1): 15-1

    Physical properties of the Schur complement of local covariance matrices

    Get PDF
    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12\rho_{12} described by a 4×44\times 4 covariance matrix \textbf{V}, the Schur complement of a local covariance submatrix V1\textbf{V}_1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to a nn-partite Gaussian state is given and it is demonstrated that the n1n-1 system state conditioned to a partial parity projection is given by a covariance matrix such as its 2×22 \times 2 block elements are Schur complements of special local matrices.Comment: 10 pages. Replaced with final published versio

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio

    Quantum transport with coupled cavities on the Apollonian network

    Full text link
    We study the dynamics of single photonic and atomic excitations in the Jaynes-Cummings-Hubbard (JCH) model where the cavities are arranged in an Apollonian network (AN). The existence of a gapped field normal frequency spectrum along with strongly localized eigenstates on the AN highlights many of the features provided by the model. By numerically diagonalizing the JCH Hamiltonian in the single excitation subspace, we evaluate the time evolution of fully localized initial states, for many energy regimes. We provide a detailed description of the photonic quantum walk on the AN and also address how an effective Jaynes-Cummings interaction can be achieved at the strong hopping regime. When the hopping rate and the atom-field coupling strength is of the same order, the excitation is relatively allowed to roam between atomic and photonic degrees of freedom as it propagates. However, different cavities will contribute mostly to one of these components, depending on the detuning and initial conditions, in contrast to the strong atom-field coupling regime, where atomic and photonic modes propagate identically.Comment: 10 pages, 10 figure

    Neutral heavy lepton production at next high energy e+ee^+e^- linear colliders

    Get PDF
    The discovery potential for detecting new heavy Majorana and Dirac neutrinos at some recently proposed high energy e+ee^+e^- colliders is discussed. These new particles are suggested by grand unified theories and superstring-inspired models. For these models the production of a single heavy neutrino is shown to be more relevant than pair production when comparing cross sections and neutrino mass ranges. The process e+eνe±W e^+e^- \longrightarrow {\nu} e^{\pm} W^{\mp} is calculated including on-shell and off-shell heavy neutrino effects. We present a detailed study of cross sections and distributions that shows a clear separation between the signal and standard model contributions, even after including hadronization effects.Comment: 4 pages including 15 figures, 1 table. RevTex. Accepted in Physical Review

    DMRG study of the Bond Alternating \textbf{S}=1/2 Heisenberg ladder with Ferro-Antiferromagnetic couplings

    Full text link
    We obtain the phase diagram in the parameter space (J/J,γ)(J'/J, \gamma) and an accurate estimate of the critical line separating the different phases. We show several measuments of the magnetization, dimerization, nearest neighbours correlation, and density of energy in the different zones of the phase diagram, as well as a measurement of the string order parameter proposed as the non vanishing phase order parameter characterizing Haldane phases. All these results will be compared in the limit J/J1J'/J\gg 1 with the behaviour of the S=1\textbf{S}=1 Bond Alternated Heisenberg Chain (BAHC). The analysis of our data supports the existence of a dimer phase separated by a critical line from a Haldane one, which has exactly the same nature as the Haldane phase in the S=1\textbf{S}=1 BAHC.Comment: Version 4. 8 pages, 15 figures (12 figures in document
    corecore