35 research outputs found

    Enhancing of women functional status with metabolic syndrome by cardioprotective and anti-inflammatory effects of combined aerobic and resistance training

    Get PDF
    These data describe the effects of combined aerobic plus resistance training (CT) with regards to risk factors of metabolic syndrome (MetS), quality of life, functional capacity, and pro- and anti-inflammatory cytokines in women with MetS. In this context, thirteen women (35.466.2 yr) completed 10 weeks of CT consisting of three weekly sessions of ,60 min aerobic training (treadmill at 65–70% of reserve heart rate, 30 min) and resistance training (3 sets of 8–12 repetitions maximum for main muscle groups). Dependent variables were maximum chest press strength; isometric hand-grip strength; 30 s chair stand test; six minute walk test; body mass; body mass index; body adiposity index; waist circumference; systolic (SBP), diastolic and mean blood pressure (MBP); blood glucose; HDL-C; triglycerides; interleukins (IL) 6, 10 and 12, osteoprotegerin (OPG) and serum nitric oxide metabolite (NOx); quality of life (SF-36) and Z-Score of MetS. There was an improvement in muscle strength on chest press (p = 0.009), isometric hand-grip strength (p = 0.03) and 30 s chair stand (p = 0.007). There was a decrease in SBP (p = 0.049), MBP (p = 0.041), Z-Score of MetS (p = 0.046), OPG (0.4260.26 to 0.3860.19 ng/mL, p,0.05) and NOx (13.362.3 mmol/L to 9.162.3 mmol/L; p,0.0005). IL-10 displayed an increase (13.667.5 to 17.2612.3 pg/mL, p,0.05) after 10 weeks of training. Combined training also increased the perception of physical capacity (p = 0.011). This study endorses CT as an efficient tool to improve blood pressure, functional capacity, quality of life and reduce blood markers of inflammation, which has a clinical relevance in the prevention and treatment of MetS

    The Effects of Resistance Training Volume on Skeletal Muscle Proteome

    Get PDF
    International Journal of Exercise Science 10(7): 1051-1066, 2017. Studies are conflicting to whether low volume resistance training (RT) is as effective as high-volume RT protocols with respect to promoting morphological and molecular adaptations. Thus, the aim of the present study was to compare, using a climbing a vertical ladder, the effects of 8 weeks, 3 times per week, resistance training with 4 sets (RT4), resistance training with 8 sets (RT8) and without resistance training control (CON) on gastrocnemius muscle proteome using liquid chromatography mass spectrometry (LC-MS/MS) and cross sectional area (CSA) of rats. Fifty-two proteins were identified by LC-MS/MS, with 39 in common between the three groups, two in common between RT8 and CON, one in common between RT8 and RT4, four exclusive in the CON, one in the RT8, and four in the RT4. The RT8 group had a reduced abundance of 12 proteins, mostly involved in muscle protein synthesis, carbohydrate metabolism, tricarboxylic acid cycle, anti-oxidant defense, and oxygen transport. Otherwise one protein involved with energy transduction as compared with CON group showed high abundance. There was no qualitative protein abundance difference between RT4 and CON groups. These results revealed that high volume RT induced undesirable disturbances on skeletal muscle proteins, while lower volume RT resulted in similar gains in skeletal muscle hypertrophy without impairment of proteome. The CSA was significantly higher in RT8 group when compared to RT4 group, which was significantly higher than CON group. However, no differences were found between trained groups when the gastrocnemius CSA were normalized by the total body weight

    Paternal resistance training modulates calcaneal tendon proteome in the offspring exposed to high-fat diet

    Get PDF
    The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8–12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father’s lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT
    corecore