12 research outputs found

    Elastomer-based visuotactile sensor for normality of robotic manufacturing systems

    Get PDF
    Modern aircrafts require the assembly of thousands of components with high accuracy and reliability. The normality of drilled holes is a critical geometrical tolerance that is required to be achieved in order to realize an efficient assembly process. Failure to achieve the required tolerance leads to structures prone to fatigue problems and assembly errors. Elastomer-based tactile sensors have been used to support robots in acquiring useful physical interaction information with the environments. However, current tactile sensors have not yet been developed to support robotic machining in achieving the tight tolerances of aerospace structures. In this paper, a novel elastomer-based tactile sensor was developed for cobot machining. Three commercial silicon-based elastomer materials were characterised using mechanical testing in order to select a material with the best deformability. A Finite element model was developed to simulate the deformation of the tactile sensor upon interacting with surfaces with different normalities. Additive manufacturing was employed to fabricate the tactile sensor mould, which was chemically etched to improve the surface quality. The tactile sensor was obtained by directly casting and curing the optimum elastomer material onto the additively manufactured mould. A machine learning approach was used to train the simulated and experimental data obtained from the sensor. The capability of the developed vision tactile sensor was evaluated using real-world experiments with various inclination angles, and achieved a mean perpendicularity tolerance of 0.34°. The developed sensor opens a new perspective on low-cost precision cobot machining

    The evolution of cutting forces during slot milling of unidirectional carbon fiber reinforced polymer (UD-CFRP) composites

    Get PDF
    Cutting forces generated during traditional machining of fiber reinforced polymer composites play an important role in determining machined surface quality. The cutting force signals also provide a live indicator of the dynamic behavior of the chip formation process. Cutting forces in machining FRPs are dependent primarily on the instantaneous fiber cutting angle, chip thickness, cutting edge geometry and the current state of cutting edge wear. In this study, effects of the cutting edge rake angle and tool wear on cutting force evolution during slot milling of unidirectional carbon fiber reinforced polymer (UD-CFRP) composite was investigated. The cutting forces were measured in the feed and normal directions and then transformed to the tangential and radial directions of the tool path. A simplified cutting force model consisting of a shearing region and a pressing was used to determine the shearing and friction force components. This allowed determination of the friction coefficient on the clearance face of the tool. It was found that the friction coefficient varied significantly with rake angle and fiber cutting angle. The effect of rake angle on cutting forces is more discernable in the shearing region with positive rake angle tool providing the most efficient cutting. Furthermore, correlations were found between machining damage and the magnitude and orientation of the resultant shearing force

    A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing

    Get PDF
    Cobots play an essential role in the fourth industrial revolution and the automation of complex manufacturing processes. However, cobots still face challenges in achieving high precision, which obstructs their usage in precise applications such as the aerospace industry. Nonetheless, advances in perception systems unlock new cobot manufacturing capabilities. This paper presents a novel multi-functional sensor that combines visual and tactile feedback using a single optical sensor, featuring a moving gate mechanism. This work also marks the first integration of Vision-Based Tactile Sensing (VBTS) into a robotic machining end-effector. The sensor provides vision-based tactile perception capabilities for precise normality control and exteroceptive perception for robot localization and positioning. Its performance is experimentally demonstrated in a precise robotic deburring application, where the sensor achieves the high-precision requirements of the aerospace industry with a mean normality error of 0.13° and a mean positioning error of 0.2 mm. These results open a new paradigm for using vision-based sensing for precise robotic manufacturing, which surpasses conventional approaches in terms of precision, weight, size, and cost-effectiveness

    Silver nanoparticle-loaded contact lenses for blue-yellow color vision deficiency

    Get PDF
    Contact lenses can be functionalized to offer advanced capabilities transcending their primary applications in vision correction and cosmetics. Herein, 40 and 60 nm spherical silver nanoparticles (SNPs) are integrated within poly(2-hydroxyethyl methacrylate) (pHEMA) contact lenses toward fabrication of SNP-loaded contact lenses with excellent optical and material properties as wearables for blue-yellow color vision deficiency (CVD) patients. The morphology and optical properties of the SNPs are characterized prepolymerization using the transmission electron microscopy (TEM) and an optical spectrophotometer. Then, the transmission spectra of the SNP-loaded contact lenses at different concentrations along with the wettability and water content are measured, to demonstrate the effect of NPs’ addition on the lenses’ optical and material characteristics. Results indicate that the transmission spectra of SNP-loaded contact lenses, with optimum concentrations, filter out problematic wavelengths of visible light (485–495 nm), which will facilitate better color distinction for blue-yellow CVD patients. The contact lenses’ optical properties are analogous to the commercial colorblind glasses, indicating their effectiveness as color filtering wearables. Finally, the cytobiocompatability analysis of the contact lenses to RAW 264.7 culture of cells shows that they are biocompatible, and the cell viability remains higher than 75% after 24 h in contact with the lenses
    corecore