29 research outputs found

    Column water vapor determination in night period with a lunar photometer prototype

    Get PDF
    In this paper we present the preliminary results of atmospheric column-integrated precipitable water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August 2011. We have compared quasi-simultaneous nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92.The AERONET sun photometer at Izana has been calibrated within AERONET- ˜ EUROPE TNA supported by the European Community – Research Infrastructure Action under the FP7 “Capacities” specific program for Integrating Activities, ACTRIS grant agreement no. 262254

    Attenuation filter issues in brewer ozone calculations

    Get PDF
    Presentación realizada en: 13th Biennial WMO-GAW Brewer Users Group Meeting, celebrada en Beijing (China) del 12 al 16 de septiembre de 2011

    Recovering long-term aerosol optical depth series (1976–2012) from an astronomical potassium-based resonance scattering spectrometer

    Get PDF
    A 37-year long-term series of monochromatic aerosol optical depth (AOD) has been recovered from solar irradiance measurements performed with the solar spectrometer Mark-I, deployed at Izaña mountain since 1976. The instrument operation is based on the method of resonant scattering, which affords wavelength absolute reference and stability (long-term stability and high precision) in comparison to other instruments based purely on interference filters. However, it has been specifically designed as a reference instrument for helioseismology, and its ability to determine AOD from transmitted and scattered monochromatic radiation at 769.9 nm inside a potassium vapour cell in the presence of a permanent magnetic field is evaluated in this paper. Particularly, the use of an exposed mirror arrangement to collect sunlight as well as the Sun–laboratory velocity dependence of the scattered component introduces some important inconveniences to overcome when we perform the instrument's calibration. We have solved this problem using a quasi-continuous Langley calibration technique and a refinement procedure to correct for calibration errors as well as for the fictitious diurnal cycle on AOD data. Our results showed similar calibration errors retrieved by means of this quasi-continuous Langley technique applied in different aerosol load events (from 0.04 to 0.3), provided aerosol concentration remains constant throughout the calibration interval.The AERONET sun photometers at Izaña have been calibrated within AERONET-Europe TNA supported by the European Community-Research Infrastructure Action under the FP7 “Capacities” specific programme for Integrating Activities, ACTRIS grant agreement no. 262254. The GAW-PFR network for AOD at WMO-GAW global observatories has been implemented by the World Optical Depth Research and Calibration Center (WORCC). Mark-I operation was supported by the Spanish National Plan of Research and Development under grant no. AYA2012–17803

    Spectral Aerosol Optical Depth retrievals by ground-based Fourier Transform Infrared spectrometry

    Get PDF
    Aerosol Optical Depth (AOD) and the Ångström Exponent (AE) have been calculated in the near infrared (NIR) and short-wave infrared (SWIR) spectral regions over a period of one year (May 2019–May 2020) at the high-mountain Izaña Observatory (IZO) from Fourier Transform Infrared (FTIR) solar spectra. The high-resolution FTIR measurements were carried out coincidentally with Cimel CE318-T photometric observations in the framework of the Aerosol Robotic Network (AERONET). A spectral FTIR AOD was generated using two different approaches: by means of the selection of seven narrow FTIR micro-windows (centred at 1020.90, 1238.25, 1558.25, 1636.00, 2133.40, 2192.00, and 2314.20 nm) with negligible atmospheric gaseous absorption, and by using the CE318-AERONET’s response function in the near-coincident bands (1020 nm and 1640 nm) to degrade the high-resolution FTIR spectra. The FTIR system was absolutely calibrated by means of a continuous Langley–Plot analysis over the 1-year period. An important temporal drift of the calibration constant was observed as a result of the environmental exposure of the FTIR’s external optical mirrors (linear degradation rate up to 1.75% month−1). The cross-validation of AERONET-FTIR databases documents an excellent agreement between both AOD products, with mean AOD differences below 0.004 and root-mean-squared errors below 0.006. A rather similar agreement was also found between AERONET and FTIR convolved bands, corroborating the suitability of low-resolution sunphotometers to retrieve high-quality AOD data in the NIR and SWIR domains. In addition, these results demonstrate that the methodology developed here is suitable to be applied to other FTIR spectrometers, such as portable and low-resolution FTIR instruments with a potentially higher spatial coverage. The spectral AOD dependence for the seven FTIR micro-windows have been also examined, observing a spectrally flat AOD behaviour for mineral dust particles (the typical atmospheric aerosols presented at IZO). A mean AE value of 0.53 ± 0.08 for pure mineral dust in the 1020–2314 nm spectral range was retrieved in this paper. A subsequent cross-validation with the MOPSMAP (Modeled optical properties of ensembles of aerosol particles) package has ensured the reliability of the FTIR dataset, with AE values between 0.36 to 0.60 for a typical mineral dust content at IZO of 100 cm−3 and water-soluble particle (WASO) content ranging from 600 to 6000 cm−3. The new database generated in this study is believed to be the first long-term time series (1-year) of aerosol properties generated consistently in the NIR and SWIR ranges from ground-based FTIR spectrometry. As a consequence, the results presented here provide a very promising tool for the validation and subsequent improvement of satellite aerosol products as well as enhance the sensitivity to large particles of the existing databases, required to improve the estimation of the aerosols’ radiative effect on climate.This study has been performed thanks to regular funds from the State Meteorological Agency of Spain (AEMET) to the World Meteorological Organization (WMO) Commission for Instruments and Methods of Observations (CIMO) Izaña Testbed for Aerosols and Water Vapor Remote Sensing Instruments, dedicated resources from SIELTEC S.L., and the European Community Research Infrastructure Action under the FP7 ACTRIS grant, agreement no. 262254. The authors also acknowledge the support from the Ministerio de Economía y Competitividad from Spain through the project INMENSE (CGL2016-80688-P) and Izaña staff for maintaining the instrumentation, thus ensuring the quality of the data

    Observations from the NILU-UV Antarctic network since 2000

    Get PDF
    Póster elaborado para la SCAR Open Science Conference celebrada en Auckland, Nueva Zelanda los días 25-28 de agosto de 2014Total ozone and UV measurements have been performed with the NILU-UV radiometer at the station of Ushuaia (54◦S), Marambio (64◦S) and Belgrano II (77◦S) since 2000. The network was established in 1999/2000 by the Spanish Agencia Estatal de Meteorología (AEMET) in collaboration with the innishMeteorological Institute (FMI), the Argentinian Dirección Nacional del Antártico-Instituto Antártico (DNA-IAA) and Centro Austral de Investigaciones Cientificas (CADIC). The location of the network was chosen in order to monitor total ozone and UV radiation at different sides of the polar vortex: Belgrano II is mostly located inside the vortex, Marambio at various times inside, on the edge of, or outside the vortex, while Ushuaia is mostly outside the vortex.The MAR Project was financed by the National R+D Plan of the Spanish Ministry of Science and Technology (National Research Program in the Antarctic) under contract REN2000-0245-C02-01

    Antarctic UV measurements since 2000

    Get PDF
    Póster elaborado para el Quadrennial Ozone Symposium celebrado en Edimburgo del 4 al 9 de septiembre de 2016.The MAR Project was financed by the National R+D Plan of the Spanish Ministry of Science and Technology (National Research Program in the Antarctic) under contract REN2000-0245-C02-01

    A new method for nocturnal aerosol measurements with a lunar photometer prototype

    Get PDF
    This paper presents the preliminary results of nocturnal Aerosol Optical Depth (τa) and Angström Exponent (α) obtained from a new lunar photometer prototype, trade name Cimel CE-318U. Due to the variation of the moon's illumination inherent to the lunar cycle, the typical Langley-plot Method used in solar photometry to calibrate these instruments cannot be applied. In this paper, we propose three different methods to carry out the lunar-photometer calibration. In order to validate the results, we have selected three events which encompass seven nights and ten days under different atmospheric conditions, including several saharan dust intrusions episodes. Method#1 is introduced in this work as a modification of the usual Langley Method.The Aeronet sunphotometer at Izana has been calibrated within ˜ AERONET-EUROPE TNA supported by the European Community – Research Infrastructure Action under the FP7 “Capacities” specific programme for Integrating Activities, ACTRIS Grant Agreement no. 262254

    A new zenith looking narrow-band radiometer based system (ZEN) for dust Aerosol Optical Depth monitoring

    Get PDF
    This study presents a new zenith looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.AERONET sun photometers at Izaña have been calibrated within the AERONET Europe TNA, supported by the European Community-Research Infrastructure Action under the FP7 15 ACTRIS grant agreement no. 262254

    Water vapor retrievals from spectral direct irradiance measured with an EKO MS-711 spectroradiometer—intercomparison with Other Techniques

    Get PDF
    Precipitable water vapor retrievals are of major importance for assessing and understanding atmospheric radiative balance and solar radiation resources. On that basis, this study presents the first PWV values measured with a novel EKO MS-711 grating spectroradiometer from direct normal irradiance in the spectral range between 930 and 960 nm at the Izaña Observatory (IZO, Spain) between April and December 2019. The expanded uncertainty of PWV (UPWV) was theoretically evaluated using the Monte-Carlo method, obtaining an averaged value of 0.37 ± 0.11 mm. The estimated uncertainty presents a clear dependence on PWV. For PWV ≤ 5 mm (62% of the data), the mean UPWV is 0.31 ± 0.07 mm, while for PWV > 5 mm (38% of the data) is 0.47 ± 0.08 mm. In addition, the EKO PWV retrievals were comprehensively compared against the PWV measurements from several reference techniques available at IZO, including meteorological radiosondes, Global Navigation Satellite System (GNSS), CIMEL-AERONET sun photometer and Fourier Transform Infrared spectrometry (FTIR). The EKO PWV values closely align with the above mentioned different techniques, providing a mean bias and standard deviation of −0.30 ± 0.89 mm, 0.02 ± 0.68 mm, −0.57 ± 0.68 mm, and 0.33 ± 0.59 mm, with respect to the RS92, GNSS, FTIR and CIMEL-AERONET, respectively. According to the theoretical analysis, MB decreases when comparing values for PWV > 5 mm, leading to a PWV MB between −0.45 mm (EKO vs. FTIR), and 0.11 mm (EKO vs. CIMEL-AERONET). These results confirm that the EKO MS-711 spectroradiometer is precise enough to provide reliable PWV data on a routine basis and, as a result, can complement existing ground-based PWV observations. The implementation of PWV measurements in a spectroradiometer increases the capabilities of these types of instruments to simultaneously obtain key parameters used in certain applications such as monitoring solar power plants performance.This study has been performed thanks to regular funds from the State Meteorological Agency of Spain (AEMET) to the World Meteorological Organization (WMO) Commission for Instruments and Methods of Observations (CIMO) Izaña Testbed for Aerosols and Water Vapor Remote Sensing Instruments and the European Community Research Infrastructure Action under the FP7 ACTRIS grant, agreement no. 262254

    WMO-CIMO testbed for aerosols and water vapor remote sensing instruments (Izaña, Spain)

    Get PDF
    Comunicación presentada en: TECO-2016 (Technical Conference on Meteorological and Environmental Instruments and Methods of Observation) celebrada en Madrid, del 27 al 30 de septiembre de 2016
    corecore