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Abstract. A 37-year long-term series of monochromatic

aerosol optical depth (AOD) has been recovered from so-

lar irradiance measurements performed with the solar spec-

trometer Mark-I, deployed at Izaña mountain since 1976.

The instrument operation is based on the method of res-

onant scattering, which affords wavelength absolute refer-

ence and stability (long-term stability and high precision)

in comparison to other instruments based purely on interfer-

ence filters. However, it has been specifically designed as a

reference instrument for helioseismology, and its ability to

determine AOD from transmitted and scattered monochro-

matic radiation at 769.9 nm inside a potassium vapour cell

in the presence of a permanent magnetic field is evaluated

in this paper. Particularly, the use of an exposed mirror ar-

rangement to collect sunlight as well as the Sun–laboratory

velocity dependence of the scattered component introduces

some important inconveniences to overcome when we per-

form the instrument’s calibration. We have solved this prob-

lem using a quasi-continuous Langley calibration technique

and a refinement procedure to correct for calibration errors

as well as for the fictitious diurnal cycle on AOD data. Our

results showed similar calibration errors retrieved by means

of this quasi-continuous Langley technique applied in differ-

ent aerosol load events (from 0.04 to 0.3), provided aerosol

concentration remains constant throughout the calibration in-

terval. It assures the validity of this technique when it is ap-

plied in those periods with relatively high aerosol content.

The comparative analysis between the recovered AOD data

set from the Mark-I and collocated quasi-simultaneous data

from the Cimel-AErosol RObotic NETwork (AERONET)

and Precision Filter Radiometer (PFR) instruments showed

an absolute mean bias ≤ 0.01 in the 10- and 12-year com-

parison, respectively. High correlation coefficients between

AERONET and Mark-I and PFR/Mark-I pairs confirmed a

very good linear relationship between instruments, proving

that recovered AOD data series from Mark-I can be used to-

gether with PFR and AERONET AOD data to build a long-

term AOD data series at the Izaña site (1976–now), suitable

for future analysis of aerosols trends and inter-annual vari-

ability. Finally, the AOD preliminary trend analysis in the

29-year period from 1984 to 2012 with Mark-I AOD revealed

no significant trends.

1 Introduction

Long-term measurements are the most important approach

for detection of changes in atmospheric composition caused

by either variation in natural or anthropogenic emissions, as

well as in atmospheric processes and sinks (Collaud Coen

et al., 2013).

There is a large number of publications in the literature

aimed at analysing long-term trends in variables such as inso-

lation (Wild, 2009), solar irradiance (Dutton and Bodhaine,
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2001), temperature (Jones and Moberg, 2003; Wild, 2009) or

aerosol burden (Ruckstuhl et al., 2008; Nyeki et al., 2012;

Collaud Coen et al., 2013; Nabat et al., 2013) in order to re-

veal the spatial and temporal variability of Earth’s climate

and its atmospheric composition. This information is cru-

cial in the diagnosis of current and past climate as well as

in the projections of future climate change, since long-term

records enable the development and enhance the skills of at-

mospheric numerical models through our theoretical under-

standing of radiative processes.

Such studies have shown the significant radiative impact

of volcanic eruptions on at-ground solar irradiance (Dut-

ton and Bodhaine, 2001). The eruption of Mount Pinatubo

in June 1991 is an example of a drastic reduction in di-

rect normal irradiance (from 25 to 30 %), greater than that

observed after the El Chichón eruption in 1982, leading

to a nearly global but non-uniform tropospheric cooling of

∼ 0.5 ◦C (Dutton and Christy, 1992). Anomalies caused by

volcanic eruptions used to be the most visible pattern to iden-

tify in a long-term record, introducing an important distur-

bance in trends analysis that must be taken into account.

Other studies focused on surface solar radiation (SSR) (Dut-

ton and Bodhaine, 2001; Wild, 2009) have evidenced a de-

creasing trend in solar radiation at Earth’s surface after the

mid-1950s, followed by an increasing trend from the mid-

1980s. These inter-decadal periods with prevailing reduc-

tion and enhancement of SSR are also known as solar dim-

ming and brightening, respectively. These variations in SSR

are not externally forced by variations of the Sun’s radia-

tive output (Lockwood and Fröhlich, 2007), and they are

therefore expected to be internal to the Earth’s atmosphere.

Ruckstuhl et al. (2008) suggested they are a consequence of

changing atmospheric transmittance mainly driven by atmo-

spheric aerosol content changes (natural or anthropogenic),

cloud changes or a combination of both effects. In this con-

text, there are a number of studies that highlight the exis-

tence of a peak in aerosol concentrations in 1988–1990 as a

consequence of the increasing anthropogenic aerosol emis-

sions during the solar dimming (Streets et al., 2009; Wild,

2009; Nyeki et al., 2012). This increase in aerosol content

was partly responsible for the widespread reduction in sun-

light at the Earth’s surface observed in some regions, mainly

in Central Europe, Africa and some locations in Asia. Subse-

quently, the air quality regulations introduced since the 1980s

in many European countries caused an important reduction

in atmospheric aerosol pollution and therefore a consequent

brightening over Europe from the late 1980s onward. How-

ever, the cause of dimming/brightening is not fully under-

stood and the large-scale significance of this phenomenon is

called into question. Thus, the relative importance of aerosol

and/or cloud effects on the dimming/brightening is proba-

bly different across the globe. There are some studies in the

literature aiming to clarify it, such as those performed by

Dutton and Bodhaine (2001), Ruckstuhl et al. (2008) and

Nyeki et al. (2012). The last two studies used aerosol opti-

cal depth (AOD) information at high altitude sites, but they

did not find significant trends in this parameter in the peri-

ods 1995–2005 and 1995–2010, respectively. Longer aerosol

concentration series are required to detect the effect on dim-

ming/brightening processes at high altitude.

Finally, there are other global and regional trends in

aerosol concentrations that could affect the overall record.

Such trends are often related to the strong decrease in emis-

sions observed in developed countries caused by air quality

regulations. However, the evolution of aerosols in the atmo-

sphere results from highly non-linear mechanisms and thence

the trend analysis from a long-term record is a complex task

(Collaud Coen et al., 2013). Small trends might be detected

as a consequence of changes in long-range transport of dust

and pollution, changes in local pollution sources, increased

emission of pollutants in developing countries or – more

difficult to discern – long-term climate variability processes

linked to aerosol transport.

At present, poor data quality and changes in the methodol-

ogy of measurements of existing databases are considered

the principal problems to reliably differentiate significant

aerosol trends from natural variability in aerosol concentra-

tion. Thus, long records of quality controlled aerosol loading

data sets are needed to better understand the causes of the

observed trends. Due to the lack of availability of reliable

multi-year observations, long-term trend analyses of aerosol

concentration at present rarely exceed more than 20 years.

There exists in the literature some exceptional long and con-

tinuous aerosol records, e.g. the oldest AOD series extracted

by Ohvril et al. (2009) in Russia, Ukraine and Estonia using

measurements of direct solar radiation (Lindfors et al., 2013)

or the AOD series measured in Mauna Loa (Shaw, 1979;

Holben et al., 2001) by means of sun photometry, and Bar-

row (Bodhaine and Dutton, 1993), using a four-wavelength

nephelometer, both since 1976. Unfortunately, as is stated by

Lindfors et al. (2013), such data exist only for a few selected

stations, so existing data sets are difficult to use for most sci-

entific assessments because they are either fragmented or not

long enough for these purposes.

Implementation of systematic measurements of aerosol

properties at sites with regional or global representation be-

gan in the mid-1970s at several remote locations, such as the

South Pole, Mauna Loa and Barrow (Collaud Coen et al.,

2013). Historically, the most ambitious attempt to monitor

background aerosol optical depth levels was organized under

the World Meteorological Organization (WMO) Background

Atmospheric Pollution Monitoring Network (BAPMoN) pro-

gram, which operated from 1972 to 1992 and served as a

precursor of the current WMO Global Atmospheric Watch

(GAW) network (Wehrli, 2008). However, the low precision

and stability of the earliest hand-held photometers soon dis-

suaded the continuity of long-term programs to detect AOD

trends with such instruments (WMO, 1994).

Ground-based sites in background conditions, far away

from anthropogenic sources, are important for studying
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spatial and temporal variability of atmospheric aerosol prop-

erties as well as climate relevant changes and trends. In this

context, Izaña is a key site to detect aerosol trends, and inter-

annual variability of dust transport associated with climate

variability. Izaña is a remote high-altitude site representative

of free troposphere conditions associated with low aerosol

concentration values (Rodríguez et al., 2009; Basart et al.,

2009; Cuevas et al., 2013). Due to its location in the North

Atlantic subtropical region, it is also suitable to study ex-

change processes between the tropics and mid-latitudes, and

for long-term monitoring of frequency and intensity of Saha-

ran dust outbreaks over the North Atlantic.

In this work we have recovered a 37-year data series

of monochromatic AOD from long-term solar irradiance

measurements performed with the solar spectrophotometer

Mark-I, continuously operated since 1976 at Izaña moun-

tain. AOD is the simplest variable to remotely assess the

aerosol loading in the atmosphere from ground-based instru-

ments (Holben et al., 2001), because it represents the ver-

tical integral of the aerosol direct irradiance extinction as

a measure of atmospheric transmittance (Ruckstuhl et al.,

2008). This series encompasses the period between 1976

and 2012. Since as early as 1997, accurate AOD measure-

ments performed with various sun photometers are available

at the Izaña Atmospheric Observatory, such as those from

the GAW-Precision Filter Radiometer (PFR), since 2001, and

from the Cimel-AErosol RObotic NETwork (AERONET)

level 2.0, in 1997, and in the 2004–2012 period. Thence,

comprehensive comparative analysis can be performed to ac-

curately validate the recovered AOD from the Mark-I data

set. Accordingly, in this paper we have studied the ability

of the astronomical Mark-I spectrometer to determine AOD

data comparable with the AOD measured with sun photome-

ters of accepted aerosol monitoring networks. As a part of

the validation, a full comparative analysis has been carried

out between the AOD quasi-simultaneously derived from the

Mark-I, AERONET and PFR instruments.

2 The Izaña site: astronomical and atmospheric

observations

Tenerife is one of the oldest atmospheric and astronomi-

cal monitoring sites worldwide. The atmospheric monitor-

ing is carried out at the Izaña Atmospheric Observatory

(IZO), from the Izaña Atmospheric Research Centre (IARC;

http://izana.aemet.es), managed by the State Meteorologi-

cal Agency of Spain (AEMET; http://www.aemet.es), mean-

while the SolarLab is a telescopic installation for solar ob-

servations owned by the Instituto de Astrofísica de Canarias

(IAC; http://www.iac.es) at the Teide Observatory (OT). Both

centres are located at a distance of 1.5 km from each other.

IZO, located at an average altitude of 2370 m a.s.l., pro-

vides atmospheric measurements representative of free tro-

posphere conditions due to the quasi-permanent subsidence

regime typical of the subtropical region. It entails a frequent

winds flow in the lower troposphere resulting in a strong and

persistent temperature inversion layer, normally located be-

tween 800 and 1500 m a.s.l., below the Izaña Station’s level.

This shields the station from the pollution from the lower part

of the island and separates a dry free troposphere from a rela-

tively fresh and humid oceanic boundary layer (Basart et al.,

2009; Cuevas et al., 2013). Thus, Izaña has been a key loca-

tion in which to perform atmospheric studies with significant

measurements over the last 30 years under international pro-

grammes (i.e. WMO-GAW, NDACC – Network for the De-

tection of Atmospheric Composition Change). This remote

high-altitude site is indicative of the global aerosol transport

because it is located within the broad “dust belt” that extends

from the eastern subtropical Atlantic eastwards through the

Sahara Desert to the Arabian Peninsula and Southwest Asia

(Basart et al., 2009) and it is close to the subtropical barrier,

allowing the study of exchange processes between the trop-

ics and mid-latitudes. As Basart et al. (2009) found, aerosol

background conditions at IZO are associated with low AOD

values, with ∼ 85 % under 0.15; meanwhile larger values

were associated with dust events more likely to occur dur-

ing summertime. Thus, a long-range dust transport above the

trade wind inversion layer is observed from early summer to

early autumn. In these cases, the station is located within the

Saharan air layer (SAL), which is a relatively dry and hot

well-mixed layer characterized by a relative diurnal stability

of aerosol optical properties (Smirnov et al., 1997; Cuevas

et al., 2014).

Many ancillary data are collected at IARC for research

purposes. Those of interest for this study are accurate AOD

measurements from the GAW-PFR, starting in 2001, and

from Cimel-AERONET level 2.0 since 2004, with a short

campaign during summer 1997.

SolarLab (2395 m a.s.l.) contains a total of six instruments

which operate continuously on a daily basis, and in some

cases have done so for more than 35 years. The IAC’s he-

lioseismology group is one of the pioneer groups in this sci-

entific domain. They participated, jointly with colleagues of

the University of Birmingham, in the 1979 key discovery that

allowed the fast development of helioseismology: the discov-

ery of the global nature of the 5 min solar oscillations and

therefore their identification as the “Sun’s eigenmodes” (Gar-

cía et al., 2007). The first instrument (the so-called “Mark-

I”), contributed to this find through high precision measure-

ments of the radial velocity of the Sun as a star.

3 The Mark-I spectrophotometer

The Mark-I spectrophotometer is a reference instrument in

helioseismology. For almost 40 years it has provided high-

precision measurements of the radial velocity of the Sun as a

star, which has enabled the study of the small velocity fluctu-

ations produced by solar oscillations and the characterization

www.atmos-meas-tech.net/7/4103/2014/ Atmos. Meas. Tech., 7, 4103–4116, 2014

http://izana.aemet.es
http://www.aemet.es
http://www.iac.es


4106 A. Barreto et al.: Recovering long-term aerosol optical depth series (1976–2012)

Figure 1. The (a) Mark-I coelostat system at the entrance of the spectrometer; and (b) and diagram of the main constituents of the Mark-I

spectrometer. PMT is photomultiplier tube.

of their spectrum (Pallé and Roca-Cortés, 2012; Roca-Cortés

and Pallé, 2014). The Mark-I is as a potassium-based res-

onance scattering spectrometer developed at the University

of Birmingham and extensively described in Brooks et al.

(1978). It currently serves as one the nodes of the Birming-

ham Solar Oscillations Network (BiSON) (Pallé and Roca-

Cortés, 2012). The Mark-I employs a magneto-optical fil-

ter to study the solar surface and the apparent Doppler ve-

locity of the 769.9 nm resonance line of the neutral potas-

sium atom in the light integrated over the entire Sun (viewed

as a star). This technique offers us an absolute wavelength

reference and greater stability in comparison to instruments

based purely on interference filters. It has operated since

1976, with its main optical components remaining essentially

unchanged. However, these operational conditions present a

real handicap due to the continuous changes in some compo-

nents of the instrument, mainly those installed outdoors for

solar tracking. Therefore, as we will see in the next section,

it cannot be considered photometrically stable for AOD de-

termination.

The Mark-I is an equatorially mounted spectrophotometer

in which sunlight is fed into the instrument using a coelo-

stat (Fig. 1a), an arrangement of open air flat mirrors with

changeable orientation during the day to follow the course

of the Sun. Following the diagram in Fig. 1b, the output

beam is reflected through a hole in the wall into the spec-

trometer. The collected solar light passes through a 1.5 nm

interference filter, centred at ∼ 770 nm. The light is then di-

rected towards the spectrometer where it traverses a circu-

lar polarizer and an electro-optical light modulator (Pallé

et al., 1992). The sunlight within this spectral range is af-

fected mainly by atmospheric potassium and O2 absorption.

The absorption lines of these atmospheric constituents are

displayed in Fig. 2a. It shows that the potassium line cen-

tred at 769.89 nm dominates in this spectral region, although

O2 absorption processes are also present. A stable vapour

cell of potassium is placed in a longitudinal and permanent

magnetic field (0.18 T), with a resonance line overlapping

the solar absorption line (solid black curve in Fig. 2b). The

magnetic field causes the two Zeeman components (blue and

red curves in Fig. 2b) to sample the circularly polarized KI

7699 Å solar line. Mark-I measures alternatively each second

the intensity of resonantly scattered light due to left-handed

(L) and right-handed (R) circularly polarized incident light

(Pallé and Roca-Cortés, 2012). Then, the ratio r = L−R
L+R

is

calculated in blocks of 40 s, filtered by clouds and instrumen-

tal errors. Cloud screening process involved in the detection

and removal of cloud contaminated data is performed by de-

tection of variations in the photometric signal (R+L) and

also in the solar radial velocity curve L−R
L+R

of the Sun, which

are strongly sensitive to the passage of clouds. As Mark-I ob-

serves all of the Sun, the speed of rotation is cancelled (some

parts of the Sun are blue-shifted and others red-shifted be-

cause the Sun rotates on its axis). When a cloud of any type

(low, medium, or even thin cirrus) blocks the Sun, speed is

no longer cancelled because a part of the Sun is more visible

than another part. As the Sun’s speed of rotation is∼ 2 m s−1

for every arc second, when clouds block the Sun, the Doppler

velocity sharply increases. This cloud screening method is

highly sensitive and reliable, and is carefully done day-by-

day as a routine job, by the same astronomer to ensure data

quality. More details about cloud screening can be found in

the Supplement Sect. S1. The ratio gives a measure of the

line-shift correction for any intensity fluctuation, and is lin-

early related to the velocity shift between the Sun and the

laboratory. Since the narrow laboratory Zeeman components

scans the steepest part of the broader solar line as Earth spins,

the scattered light is also sensitive to the Sun–laboratory rel-

ative velocity.

As demonstrated in this paper, the most important vari-

ables are measured by two photomultiplier tubes (PMTs): the

scattering and transmission PMTs on the diagram in Fig. 1b.

The scattering PMT is placed in the transverse direction of

the incident beam, recording the information of scattered

light (R+L) at any direction as a consequence of the res-

onant scattering effect inside the vapour cell. The other is

set in the direction of the transmitted beam, recording the

information of the transmitted light. We have scattered light

Atmos. Meas. Tech., 7, 4103–4116, 2014 www.atmos-meas-tech.net/7/4103/2014/



A. Barreto et al.: Recovering long-term aerosol optical depth series (1976–2012) 4107

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 2. (a) Atmospheric transmission within the Mark-I interference filter bandwidth, and (b) the
relative displacement of solar line (solid black curve) with respect to the laboratory line (dashed curve)
measured as a function of R and L.

31

Figure 2. (a) Atmospheric transmission within the Mark-I interference filter bandwidth, and (b) the relative displacement of the solar line

(solid black curve) with respect to the laboratory line (dashed curve) measured as a function of R and L.

measurements since 1976 but transmitted light information

is limited to the period from 1984 to 2002. Since transmit-

ted light is a strictly photometric magnitude and therefore

directly related to the atmospheric extinction, we preferably

use it to recover AOD information. The information extracted

from the scattered component also has a residual velocity

contribution that could affect the accuracy of the retrieved

AOD. However, due to the lack of transmitted component

information for the years 1976, 1977, 1980–1983 and 2003–

2012, AOD was determined from scattered light in these peri-

ods. Since this component is the sum of two monochromatic

(R+L) measurements in the profile of the solar absorption

line, it can also be used for AOD determination. As a result,

we have a total of 5 786 031 solar measurements available to

determine AOD information, which correspond to 8084 days

of measurements.

4 Calibration and methodology of AOD determination

from Mark-I observations

Mark-I calibration was performed using the Langley tech-

nique (Shaw, 1983; Schmid et al., 1997; Holben et al., 1998).

It is the most common approach in photometry to determine

the extraterrestrial voltage V0,λ from monochromatic photo-

metric measurements performed at different solar elevation

angles or air masses. This method is based on the Beer–

Lambert–Bouguer law which implies that the zero-air mass

photometer voltage (V0,λ) can be determined by means of a

plot analysis of these monochromatic measurements against

air masses, provided the atmospheric turbidity remains con-

stant and preferably low over the measurement period. Sun-

rise air masses ranging from 2 to 5 have been considered for

our Langley calculation, which implies between 1 h 25 min

and ∼ 2 h of measurements in equinoxes and solstices, re-

spectively. Corrections for Rayleigh scattering (Kasten and

Young, 1989; Bodhaine et al., 1999) and for mixed gases

have been included in the calibration procedure.

Due to the important changes in the instrument as a re-

sult of degradation of their exposed parts and the replace-

ment of some internal parts, we cannot consider Mark-I as a

photometrically stable instrument. Thus, we propose to carry

out a quasi-continuous Langley procedure to calibrate the

Mark-I. We consider this technique suitable to account for

all these changes and to characterize the instrument through-

out the whole period of measurements. We have performed

such an analysis for the transmitted component by selecting

those days with AOD< 0.04 and correlation coefficients of

the fitting plot ≥ 0.99. The only exception for these thresh-

olds was set during the period from 1992 to 1993, when the

Mount Pinatubo eruption (June 1991) released huge amounts

of volcanic aerosols into the stratosphere leading to a signif-

icant increase in background aerosols levels, with monthly

mean AOD values at Izaña up to 0.14 in 1992. For this rea-

son, and to also account for Saharan dust intrusions that may

have occurred during this period, the threshold of AOD for

the Langley analysis was set at 0.3, an order of magnitude

higher to capture the instrument’s variability in this period.

If the initial threshold of 0.04 was set for 1992, no V0 values

would be retrieved. Due to the high dispersion of extraterres-

trial voltages, V0, obtained from the scattered component as

a consequence of the Sun–laboratory velocity effect on this

component, we set the AOD threshold to perform a Langley

calculation using this component in 0.3, in order to have a

higher number of daily calibration values to follow the vari-

ation in the instrument’s calibration. In the following sec-

tions we discuss the suitability of those Langley calculations

performed under such high aerosol content conditions. Both

thresholds have been selected according to an exhaustive data

analysis to get a similar number of V0 values in every year.

The yearly V0 variation (in Digital Numbers, DNs) of

the Mark-I solar spectrometer determined from the Lang-

ley analysis is shown in Fig. 3. A total of 2462 V0 s were

obtained using this technique, the rest of the days were

without V0 information (about 70 % of them) recovered by

means of a cubic spline smoothing process. These values

were subsequently reprocessed when a deficient calibration

www.atmos-meas-tech.net/7/4103/2014/ Atmos. Meas. Tech., 7, 4103–4116, 2014
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Figure 3. Mark-I extraterrestrial voltage (V0) variation extracted from the scattered (in green) and the
transmitted component (in blue) within the period 1976–2012. The smoothing cubic spline is displayed
with the violet line. Red arrows mark a change in the PMT of Mark-I.
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Figure 3. Mark-I extraterrestrial voltage (V0) variation extracted from the scattered (in green) and the transmitted component (in blue) within

the period 1976–2012. The smoothing cubic spline is displayed with the violet line. Red arrows mark a change in the PMT of Mark-I.

Table 1. Definitions of the statistics used in this study: fi represents the variable under validation, and Obsi the reference value.

Statistics

Score Equation Range Perfect score

Mean bias (MB) MB= 1
N

∑
(fi −Obsi) −∞ to +∞ 0

Root mean square error (RMSE) RMSE=

√
1
N
· (fi −Obsi)

2 0 to∞ 0

Pearson correlation coefficient (r) r =

∑
(fi−fi )·(Obsi−Obsi )

σfi ·σObsi
−1 to 1 1

was observed, and were the most important calibration prob-

lems associated with the existence of a fictitious diurnal cycle

on AOD data. This problem with the calibration procedure

was identified by Cachorro et al. (2004, 2008) in AERONET

AOD data. Following these authors, we considered a refine-

ment procedure in order to improve the V0 accuracy. In a first

stage, we selected those days affected by a fictitious diurnal

cycle on the AOD retrieval, both with convex and concave

behaviour, characterized by an amplitude in AOD of > 0.3.

This strong AOD amplitude points to important imprecisions

in V0 estimation that must be corrected. Again, the thresh-

old was set to correct the major number of events affected by

an inaccurate V0 estimation. If a set of requirements are ful-

filled (i.e. an air mass m< 7, a minimum of 10 points to per-

form the fit after outliers removal, and correlation coefficient

a r > 0.98) a new calibration constant V ′0 can be retrieved

as the slope of the AOD vs. m−1 fitting plot. A second re-

processing step was included for AOD amplitude< 0.3 and

AOD< 0 events. In this situation, V ′′0 was determined con-

sidering similar requirements for the m range, the number of

points and outliers as for the first stage, but with a lower re-

striction of the correlation coefficient (r > 0.9). The AOD

corrections using this recalibration procedure led to AOD

changes up to 0.88. These results, in addition to the final

Mark-I AOD series validation, indicate that this methodology

is a suitable tool for an effective correction of the instru-

ment’s calibration uncertainties.

Figure 3 clearly shows the important variation in the ex-

traterrestrial voltage recovered from this astronomical instru-

ment. It ranges from 3332 to 2.54× 105 DNs. These signif-

icant variations in V0 are directly associated with mainte-

nance operations in the coelostat. It is worth mentioning that

the transmitted component was used for calibration between

1984 and 2003, and the scattered component in the remaining

period. It is therefore expected that changes in V0 as a result

of this change (see the variation between 1983 and 1984 and

between 2003 and 2004). The most important change is ob-

served in 1984, and is attributed to the change in the scatter-

ing PMT gains made in this year. In May 2011 the PMT mea-

suring scattered component was replaced, and a consequent

variation in V0 was observed. Smaller changes (∼ 50 %) are

observed through the whole period, mostly attributed to mir-

ror replacement, cleaning, and realignment processes. This

appreciable variability in V0 made it challenging to use pho-

tometric information from the Mark-I instrument to obtain

a long-term series of AOD useful for climatic studies. As

we present in Sect. 5, we used efficient techniques pub-

lished in the literature to overcome this problem. Further-

more, these type of variations are frequently encountered in

the typical instruments involved in sun photometry. In fact,
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the AERONET AOD series at Izaña (from 2004 to 2014) was

been obtained using a V0 series with variations up to 80 %.

These variations are not related to the individual AERONET

sensor’s V0 stability, but rather associated with differences

in the gain settings of the several AERONET master instru-

ments used at the observatory. In spite of these variations, the

accuracy of AERONET data is incontestable, showing min-

imum differences (up to ± 0.02) with PFR series obtained

at the same station. We claim that the replacement of main

components of the instrument and the continuous changing

of the Mark-I external parts have similar consequences for

the V0 series and they do not prevent retrieval of an AOD

series with sufficient accuracy for climate study purposes.

5 Results

5.1 AOD validation

In order to compare AOD at 769.9 nm from the Mark-I spec-

trophotometer with the PFR and Cimel-AERONET sun pho-

tometers which take measurements at different wavelengths,

we used the Ångström exponent (α) following Eq. (1). It re-

lates the AOD value measured at two different wavelengths,

λ and λ0. We computed the Ångström exponent using PFR

data centred at 862, 550 and 412 nm, while we used chan-

nels centred at 870, 675, 500 and 440 nm in case of Cimel-

AERONET data. In this equation λ is 769.9 nm and λ0 is 862

and 870 nm for PFR and AERONET, respectively.

AOD(λ)= AOD(λ0) ·

(
λ

λo

)−α
(1)

AOD comparison using quasi-simultaneous data extracted

from Mark-I, PFR and AERONET was performed to as-

sess the ability of the solar spectrometer Mark-I to retrieve

accurate long-term AOD information. We considered coin-

cident measurements performed with these instruments be-

fore 2013, including AERONET measurements in June and

July 1997, and from 2004 to 2012, as well as PFR mea-

surements in the period 2001–2012, both performed at IZO.

Since PFR provides hourly-AOD data, we considered quasi-

simultaneous data when PFR and Mark-I measurements fell

within a ±20 min range. It entails a maximum of 65 Mark-

I observations into the ±20 min window. A lower temporal

range of±10 min was considered to compare the AERONET

and Mark-I data. It entails a maximum of 22 Mark-I mea-

surements within this temporal window. Definitions of the

main statistics used in this paper are provided in Table 1.

The scatter plots of daily AOD values from Mark-I, Cimel-

AERONET and PFR for 1997 and 2001–2012 are displayed

in Fig. 4. The main skill scores of the validations are shown

in Table 2. A low mean bias (MB) value of −0.008 was ob-

tained for the whole analysis period for the AERONET and

Mark-I comparison, with a Pearson correlation coefficient

(r) of 0.92. A total of 95,297 coincident measurements were

Table 2. The skill scores from AERONET/PFR versus Mark-I com-

parison (transmitted component for 1997, 2001 and 2002, and scat-

tered component from 2003 to 2012). Mean bias (MB), root mean

square error (RMSE), Pearson correlation coefficient (r), and num-

ber of cases (n). The total row indicates the scores obtained using

the whole period.

Instrument Year
Mark-I Spectrometer

MB RMSE r n

AERONET Cimel 1997 0.006 0.021 0.91 1973

2004 −0.014 0.026 0.95 3989

2005 −0.013 0.023 0.96 6521

2006 −0.012 0.022 0.96 7587

2007 −0.011 0.021 0.94 12 304

2008 −0.008 0.025 0.94 14 947

2009 −0.018 0.030 0.90 9521

2010 −0.015 0.020 0.97 8321

2011 −0.009 0.020 0.96 9793

2012 −0.007 0.021 0.96 8598

TOTAL −0.008 0.034 0.92 95 297

PFR 2001 0.001 0.014 0.98 376

2002 0.004 0.020 0.92 1597

2003 −0.008 0.019 0.74 550

2004 0.001 0.032 0.86 886

2005 0.007 0.029 0.94 565

2006 −0.003 0.018 0.97 1638

2007 0.008 0.023 0.93 1942

2008 0.013 0.022 0.83 282

2009 0.006 0.027 0.91 1281

2010 0.002 0.015 0.97 1695

2011 0.018 0.024 0.95 1975

2012 0.004 0.018 0.96 1473

TOTAL 0.004 0.022 0.94 14 260

used in this comparison. The annual comparison shows MB

values ranging from −0.018 to 0.006 and high correlation

coefficients (r > 0.90) and RSMEs below 0.030.

Regarding the PFR and Mark-I comparison, a total of

14 260 matching cases were used, and a MB of 0.004 was

obtained. A fairly good agreement was found between both

instruments (Table 2), and MB values ranging from 0.018

to −0.008 were obtained. Correlation coefficients were sim-

ilar to those retrieved in the AERONET and Mark-I compar-

ison, with values> 0.83, with the exception of 2003, with a

markedly lower r value (r = 0.74). The most important MB

deviations were observed for 2011 with a value of 0.018.

The high MB observed for 2008 was attributed to the spar-

sity of data. The skill scores in the other years revealed a

MB≤ 0.01.

In general, AOD from these instruments correlated quite

well each other, with AOD differences between AERONET

and Mark-I and between PFR and Mark-I lying within the

range 0.01–0.02 (see Table 2). These differences are similar

to those obtained between PFR and AERONET (0.01–0.02)

reported by Barreto et al. (2013) and Kazadzis et al. (2014)

and higher than those retrieved by Nyeki et al. (2012). From
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Figure 4. Scatter plots of daily AOD values from the Mark-I against the Cimel-AERONET (blue) and the PFR (pink) for each year (1997

and 2001–2012). Solid lines represent the linear regression lines.

this validation procedure, we can admit that Mark-I has a

worse precision than that established for PFR (Wehrli, 2000),

and that expected for AERONET masters (0.005–0.009) (see

Eck et al., 1999). However, we can be confident of the ability

of Mark-I solar spectrometer to obtain AOD with relatively

small differences in comparison with reference instruments.

5.2 Aerosol content impact on instrument’s calibration

In order to assess the suitability of including days with high

aerosol loads to perform Langley calibrations we compared

quasi-simultaneous and coincident AOD information deter-

mined from Mark-I observations (transmitted component)

and PFR during 2002. As in the previous section, we con-

sidered data quasi-simultaneous when PFR and Mark-I mea-

surements fell within a temporal range of±20 min. A total of

818 coincident AODs were included, which correspond to 92

different days. The MBs (AODPFR vs. AODMark-I) obtained

during low aerosol content events (0.008 for AOD≤ 0.04) is

of the same order of magnitude to those obtained in case of

higher turbidity conditions (−0.005 for 0.04< AOD< 0.3)

(Table 3). In principal, the V0 values obtained in days af-

fected by rather high aerosol loads could be considered as

not suitable, and would result in wrong AOD values. How-

ever, our results show that calibrations performed at Izaña

under relatively high AOD conditions are affected by simi-

lar calibration errors as those carried out in low AOD events,

provided aerosol concentration remained constant during the

Langley calculation. Despite the fact that aerosol stability

conditions are most likely met under low AOD cases, accord-

ing to our experience at Izaña they are also reached under

relatively high aerosols (mineral dust) content conditions. In
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Table 3. Mean bias (MB) and number of cases of the daily coinci-

dent comparison between PFR and Mark-I (transmitted component)

AOD extracted during 2002.

AOD range MB Number of cases

≤ 0.04 0.008 635

[0.04,0.1] −0.005 75

[0.1,0.2] −0.005 70

[0.2,0.3] −0.005 38

Supplement Sect. S2 a detailed analysis of the dependence

of aerosol content on the Langley calibration procedure at

Izaña station is given. We can see how, as a consequence

of the special and specific characteristics of the SAL (ver-

tical mixing and stability) and the position of this station

within the SAL, we can follow the classical Langley tech-

nique for instrument’s calibration under a priori non-ideal

conditions (AOD≤ 0.3). The stability condition here is as-

sured by restricting the calibration analysis to highly corre-

lated Langley calibrations (r ≥ 0.99). This is an outstanding

result since it tells us that we can obtain reliable V0 in long

periods of relatively high AOD (up to 0.3) affected by min-

eral dust conditions. Taking into account the long-term be-

haviour of the stratospheric layer after the eruption of Mount

Pinatubo (Ansmann et al., 1996), which had an exponen-

tial decay beginning at peak opacity and decaying through

subsequent years until background levels were reached, no

substantial changes at the daily scale are expected for post-

Pinatubo conditions. Thus, we can assume daily stable and

high AOD in this period similar to those exhibited under dust

events. In fact, Russell et al. (1993) considered post-Pinatubo

conditions suitable to perform accurate Langley calibrations.

6 AOD series from Mark-I

Data consistency relies on its homogeneity, and assurance

that data variability is not caused by changes in the instru-

ment. The 37-year AOD series determined with the Mark-

I instrument, as well as the long-term monthly variation of

the homogenized data set, are shown in Fig. 5. The lat-

ter was calculated using the methodology proposed by Lan-

zante (1996). It is an iterative procedure that makes it pos-

sible to detect outliers and inhomogeneities in the median,

evaluate the signal to noise ratio, and finally eliminate those

inhomogeneities with a confidence level of 99 %. We can see

in Fig. 5 the impact of the two most important volcanic erup-

tions: El Chichón (1982) and Mount Pinatubo (1991).

The monthly mean AOD values at 769.9 nm from the

Mark-I, Cimel-AERONET and GAW-PFR data sets for the

common period 2001–2013 are presented in Fig. 6. Simi-

lar to the previous section, a good agreement between the

three data sets is seen, even though the monthly AOD means

were computed with the daily AOD means available for each

instrument, so that the days used in the monthly averages

do not necessarily coincide. This is crucial in a station as

Izaña where AOD values can sharply increase from < 0.03

to values > 0.5 (i.e. one order of magnitude) after a Saharan

intrusion. Another circumstance to be taken into account in

this comparison is that AOD values for AERONET Cimel-

GAW-PFR at 769.9 nm were estimated using the Ångström

exponent (α), which may introduce significant uncertainties,

especially for very low AOD. Extremely high AOD values

recorded in summer 2012, for both AERONET and Cimel-

GAW-PFR, are well captured by Mark-I. Conversely, the no-

tably low values observed in 2002 by GAW-PFR are also

well matched by the Mark-I. This indicates that the recovery

of the Mark-I AOD data series back to 1976 is a unique and

very valuable data set for studying the long-term inter-annual

variability of Saharan dust intrusions over the Atlantic and,

in general, for climatological studies of atmospheric aerosols

in this region.

Although an accurate analysis of the long-term series

is beyond the scope of this work, we conducted a pre-

liminary AOD analysis, as well as a rough assessment of

AOD trends from Mark-I data. Since IZO is strongly af-

fected by Saharan dust intrusions during spring and sum-

mer, and the fact that these events are driven by atmospheric

processes with strong inter-annual variability, we only in-

cluded winter data in the Mark-I trend analysis. Decem-

ber to February is virtually unaffected by dust conditions.

During this period, AOD is below 0.02 and α values are

higher than 1.20, indicating that dust intrusions don’t af-

fect the station (see http://aeronet.gsfc.nasa.gov/new_web/

V2/climo_new/Izana_500.html?SC#12). These values are in

contrast to the summer period, when the AOD has a peak

value of 0.15 in July and α is typically below 0.6. The trend

analysis was performed for the period 1984–2012 following

Ruckstuhl et al. (2008), who estimated the trends for dif-

ferent time periods by a fitting plot of monthly mean AOD

with a least mean square approximation. This methodology

for trend detection is summarized in the Eq. (2), where Yt
represents the studied climate variable (AOD in this case) at

time t , which has the range (t = 1, . . .,T ), µ is a constant

term, ω is the linear AOD trend, S is the seasonal term ,and

Nt is the monthly mean noise of the time series assumed to

be autoregressive on the order of the model. Further details of

this methodology can be found in Weatherhead et al. (1998).

We have not included in the trend analysis data from 1991 to

1994 because of the Mount Pinatubo eruption (1991). Dur-

ing such volcanic events, the effect of the eruption decays

with time (Weatherhead et al., 1998) and therefore introduces

non-linear terms not considered in the linear model given in

Eq. (2).

Yt = µ+ω ·Xt + S+Nt . (2)

We estimated the decadal AOD median at Izaña, presented

in Table 4. AOD has remained nearly stable at 0.02 since

1984, with values of 0.022 for the 1984–1993 decade, 0.024
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Figure 5. Long-term daily mean AOD (at 769.9 nm) data series at Izaña extracted from Mark-I scattered
data (from 1976 to 1983, as well as from 2003 to 2012) and transmitted data (from 1984 to 2002).
Monthly mean of the homogenized AOD series is displayed with the violet line for Mark-I. No available
data from 1978 to 1980.
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Figure 5. The long-term daily mean AOD (at 769.9 nm) data series at Izaña extracted from the Mark-I scattered data (1976–1983, and 2003–

2012; no data available 1978–1980) and transmitted data (1984–2002). The monthly mean of the homogenized AOD series is displayed with

the violet line for the Mark-I.
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Figure 6. Homogenized AOD monthly means at 769.9 nm: 2001-2012 Mark-I (blue), 2001-2012 GAW-
PFR (yellow), and 2004-2012 Cimel-AERONET (green).
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Figure 6. Homogenized AOD monthly means at 769.9 nm for Mark-I 2001–2012 (blue); GAW-PFR 2001–2012 (yellow), and Cimel-

AERONET 2004–2012 (green).

Table 4. Median and standard deviation (σ ) of the monthly-mean

homogenized AOD data set during wintertime (December, January

and February).

Decade Median σ

1984–1993 0.022 0.012

1994–2003 0.024 0.014

2004–2012 0.027 0.014

in the 1994–2003 decade and 0.027 in the period 2004–2012.

Our results do not show the expected decrease in AOD as a

result of the solar brightening effect, as stated for example

by Streets et al. (2009), who observed a reduction in AOD

over Europe at 550 nm from 0.31 in 1980 to a stable value of

0.26 in 2000–2006. However, we have to keep in mind, first,

that IZO is representative of subtropical free troposphere

conditions, with their associated very low AOD background

values, and hence is less affected by continental pollution,

and second, the decisive role played by Saharan dust intru-

sions in this region in summertime, which shows significant

inter-annual and decadal variations modulating the long-term

AOD series.

The effect of the Mount Pinatubo eruption is clearly de-

tected in the AOD record of Fig. 5. The El Chichón eruption

signal is not as apparent because of the gaps in the data series.

From the homogenized monthly series we assessed the AOD

anomalies caused by these two important volcanic events.

These anomalies are the AOD differences regarding the av-

erage AOD of the period 1984–1993. The AOD anomaly ob-

served after El Chichón eruption in 1982 was 0.023. No win-

tertime data were available to evaluate anomalies in 1983.

In the case of Mount Pinatubo, the anomalies observed af-

ter the eruption were more important and persistent than for

the El Chichón eruption, recording a peak impact in 1992

with an AOD anomaly of 0.049. In turn, the median AOD

value during winter 1992 exceeded by > 300 % the median

wintertime decadal value in Table 4. The effects of the Mount

Pinatubo eruption on AOD were not significantly reduced un-

til early 1993. The highest monthly AOD value at 769.9 nm

observed at Izaña as a result of the Pinatubo eruption was

measured in July 1992 (0.14). These values are consistent

with AOD measurements at 500 nm at Mauna Loa (Hawaii)

reported by Russell et al. (1993, 1996). These authors pre-

sented peak AOD values at 500 nm∼ 0.20 recorded in Au-

gust, 1991, when the Pinatubo cloud arrived at the station.
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The time delay in the AOD peak observed at Mauna Loa and

IZO is consistent with peak values reported by Stone et al.

(1993) at Barrow (in spring, 1992), by Alados-Arboledas et

al. (1996) at Almería (in March, 1992) or in Central Eu-

rope by Ansmann et al. (1996) (in April 1992). There are

different estimations in the literature for the evolution and

dissipation of the aerosol cloud from Mount Pinatubo. It is

accepted that the e-folding decline after maximum volcanic

perturbation, with a decay time depending on the location of

the station, was about 14 months for Arctic sites like Bar-

row (Stone et al., 1993), 10 months for MLO (Stone et al.,

1993) and between 14 to 15 months for Central Europe (Ans-

mann et al., 1996). In the IZO case, we estimate a time decay

of about 13 months, assuming an exponential decay in AOD

(AOD (t)=AODpeak ·exp(−t/T )) after reaching its peak value

AODpeak, where T represent the time delay.

Regarding the trend analysis over the whole period, our

results indicate that there is no significant trend in the AOD

at IZO from 1984 to 2012. This result is consistent with the

negligible and statistically insignificant AOD trend found by

Ruckstuhl et al. (2008) using long-term aerosol concentra-

tion measurements at three high-altitude stations located in

Switzerland between 995 m and 3580 m a.s.l. Nyeki et al.

(2012) observed no significant decrease in aerosol concentra-

tion in the period 1995–2010 at the same three high-altitude

stations after a new recalibration procedure.

These results will be subject of detailed analysis and as-

sessments in future studies, incorporating more information

on in situ aerosol measurements at IZO, backward trajecto-

ries and other ancillary information accounting for Saharan

dust intrusions over the Canary Islands since these modulate

the AOD variations at IZO.

7 Summary and conclusions

In this work we have assessed the feasibility to determine

long-term series of AOD from long-term irradiance measure-

ments using an astronomical spectrometer. This astronom-

ical device, named Mark-I, was specifically designed as a

reference instrument in helioseismology. It uses a magneto-

optical filter and operates using the method of resonant scat-

tering, based on atomic transitions of potassium induced by

incident sunlight. This technique offers us an absolute wave-

length reference and greater stability in comparison to in-

struments based purely on interference filters, but not the

required photometric stability to perform instrumental cali-

bration. This due to the use of mirrors (coelostats), contin-

uously exposed outdoors to introduce sunlight into the in-

strument, whose adjustment and maintenance produce im-

portant changes in the instrument calibration that must be

corrected. In addition, due to the Sun–laboratory velocity ef-

fect on the scattered component, high dispersion in V0 in-

troduced additional difficulties in the Mark-I calibration. To

solve these problems, we proposed a quasi-continuous Lan-

gley calibration procedure which, in principle, is not a stan-

dard procedure because it entails calibration under relatively

high AOD conditions. However, our results indicated that

calibration errors are not dependent on the aerosol load in

our station and therefore, V0 can be calculated using this

technique on those days with relatively high turbidity (AOD

up to 0.3), provided aerosol concentration remains constant.

This result is important in order to extend and assure calibra-

tions for relatively long periods of time when it is not pos-

sible to find days with AOD< 0.05 suitable to perform Lan-

gley calibrations, for instance after major volcanic eruptions

release aerosols into the atmosphere. Such a global impact

was caused by the eruption of Mount Pinatubo, which had an

effect lasting from 1991 to 1993. In addition, we considered

a refined procedure to improve the calibration that corrects

for deficient calibration as well as fictitious diurnal cycles

imposed on AOD data.

AOD determined from the Mark-I spectrometer using

these procedures was compared with quasi-simultaneous

AOD measurements using reference instruments (Cimel-

AERONET and PFR). The 10- and 12-year comparison be-

tween AERONET and Mark-I and between PFR and Mark-I,

respectively, showed MB values≤ 0.01 in both cases, con-

stituting an excellent result. The yearly validation performed

in all cases by means of Cimel-AERONET and Mark-I and

PFR and Mark-I comparison showed low MB values≤ 0.02

and high correlation coefficients (generally r > 0.90). This

validation procedure shows the ability of the Mark-I to re-

trieve an AOD series with small differences in comparison

with those of reference instruments (PFR and Cimel). This

allowed us to extend the long-term AOD series at the Izaña

site with PFR and Cimel (since 2001 and 2003, respectively)

back to 1976 using AOD data from the Mark-I. This is a ma-

jor achievement, and will aid future studies of inter-annual

and decadal variations of AOD.

We have performed a preliminary trend analysis for IZO

using wintertime Mark-I data. We obtained a nearly stable

AOD of 0.022 since 1984, as well as a negligible trend in

AOD in the time period from 1984 to 2012. The decadal

trend analysis performed using Mark-I data revealed that no

significant trend in AOD was observed at IZO. We have also

estimated the impact of the major volcanic events occurred

since 1976: the eruptions of El Chichón (1982) and Mount

Pinatubo (1991). We observed AOD anomalies due to the El

Chichón eruption up to 0.023. More important and persistent

anomalies up to 0.049 were associated with the eruption of

Mount Pinatubo.

Further analysis, incorporating information from dust

events, is required in order to ensure the existence of a sta-

tistically significant decrease in AOD since 1980s as con-

firmation of the solar brightening in our region, as well as

other statistically important trends on the AOD signal. This

is especially critical in the subtropical region over the North

Atlantic since Saharan dust intrusions undergo large inter-

annual and decadal variations modulating AOD variations.
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