40 research outputs found

    Characteristics of hydrogen sensors based on thin tin dioxide films modified with gold

    Get PDF
    Effect of hydrogen in the concentration range from 10 to 2000 ppm on the characteristics of sensors based on thin films of tin dioxide modified with gold (Au/SnO2:Sb, Au) is studied in the thermo-cyclic mode at temperatures from 623 to 773 K and absolute humidity from 2.5 to 20 g/m3. Experimental data are discussed using expressions obtained within the framework of a model that takes into account the presence of three types of adsorbed particles (O¯, OH, and OH¯) on the surface of SnO2 nanocrystals. The characteristics of the sensors based on thin Pt/Pd/SnO2:Sb films (the first series) are compared with those of Au/SnO2:Sb, Au films (the second series). It is found that the degree of dissociation of molecular hydrogen into atoms during adsorption on the sensor under interaction with Au particles on the SnO2 surface is 4 times greater than that under interaction with Pt/Pd particles. The degree of dissociation of H2O molecules into hydrogen atoms and hydroxyl groups in pure moist air on the surface of the sensors of the second series is 1.6 times greater than that for the sensors of the first series. Thus, gold is a more effective stimulator of the dissociation of H2 and H2O molecules than platinum and palladium. A formula is obtained that describes more accurately the dependence of the response of the sensors of both series to the effect of hydrogen on the concentration of this gas and on the temperature of the measuring devices

    Effect of gold and nickel co-additives on gas-sensitive characteristics of SnO2 thin-film on exposure to hydrogen and nitrogen dioxide

    Get PDF
    The results of investigation of the gas-sensitive properties of sensors based on the tin dioxide thin films with combined additives of gold and nickel obtained by the DC - magnetron sputtering are presented. The investigated sensors are characterized by a high response to low concentrations of NO2 of 0.45 – 10.23 ppm at temperatures of 50 – 150 °C with response time of 10 s. The sensitivity of sensors to hydrogen appears at the temperature of 250 °C. The hydrogen sensors are characterized by high reproducibility of the measurement results. The obtained results are explained by the synergistic effect of gold and nickel additives, as well as the ability of the Ni to prevent the interaction of hydrogen with lattice oxygen atoms in the subsurface part of tin dioxide

    Effect of long-term operation on energy band bending at the SnO2 microcrystals interfaces in thin tin dioxide films with various catalysts

    Get PDF
    This work presents the results of investigation of stability of energy band bending at the SnO2 microcrystals interfaces in thin films of tin dioxide with deposited Pt and Pd dispersed layers (Pt/Pd/SnO2:Sb) and with the additions of gold in the bulk and on the surface (Au/SnO2:Sb, Au) in long - term operation. Measurements of energy band bending were showed that the significantly variation of this value is observed in first month of the sensor using. Perhaps this phenomenon is caused by the surface reconstruction during operation of sensors and consequently by the increase of density of oxygen ions chemisorbed on the surface of tin dioxide

    Properties of resistive hydrogen sensors as a function of additives of 3d-metals introduced in the volume of thin nanocrystalline SnO2 films

    Get PDF
    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors’ characteristics increases

    ITO Thin Films for Low-Resistance Gas Sensors

    Get PDF
    This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540). The research was carried out with the support of a grant under the Decree of the Government of the Russian Federation No. 220 of 9 April 2010 (Agreement No. 075-15-2022-1132 of 1 July 2022). In addition, this research was partly performed at the Institute of Solid State Physics, University of Latvia (ISSP UL). ISSP UL, as the Centre of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, project CAMART2.Indium tin oxide thin films were deposited by magnetron sputtering on ceramic aluminum nitride substrates and were annealed at temperatures of 500 °C and 600 °C. The structural, optical, electrically conductive and gas-sensitive properties of indium tin oxide thin films were studied. The possibility of developing sensors with low nominal resistance and relatively high sensitivity to gases was shown. The resistance of indium tin oxide thin films annealed at 500 °C in pure dry air did not exceed 350 Ohms and dropped by about 2 times when increasing the annealing temperature to 100 °C. Indium tin oxide thin films annealed at 500 °C were characterized by high sensitivity to gases. The maximum responses to 2000 ppm hydrogen, 1000 ppm ammonia and 100 ppm nitrogen dioxide for these films were 2.21 arbitrary units, 2.39 arbitrary units and 2.14 arbitrary units at operating temperatures of 400 °C, 350 °C and 350 °C, respectively. These films were characterized by short response and recovery times. The drift of indium tin oxide thin-film gas-sensitive characteristics during cyclic exposure to reducing gases did not exceed 1%. A qualitative model of the sensory effect is proposed. © 2022 by the authors. --//-- Published under the CC BY 4.0 license.Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540); ISSP UL, as the Centre of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, project CAMART2

    HVPE growth of corundum-structured α-Ga2O3 on sapphire substrates with α-Cr2O3 buffer layer

    Get PDF
    Gallium oxide films were grown by HVPE on (0001) sapphire substrates with and without α-Cr2O3 buffer produced by RF magnetron sputtering. Deposition on bare sapphire substrates resulted in a mixture of α-Ga2O3 and ε-Ga2O3 phases with a dislocation density of about 2∙1010 cm-2. The insertion of α-Cr2O3 buffer layers resulted in phase-pure α-Ga2O3 films and a fourfold reduction of the dislocation density to 5∙109 cm-2

    Исследование аномально высокого времени релаксации фототока в диодах Шоттки на основе a-Ga2O3

    Get PDF
    Ga2O3 is an ultra-wideband material with excellent optical characteristics. It is a promising material for power applications and optoelectronics because of its high electrical breakdown voltage and radiation hardness. It is optically transparent for visible light and UVA but UVC-sensitive. One of the main disadvantages of this material is the anomalous slow photoeffect: photoconductivity rise and decay characteristic times can be more than hundreds of seconds long. This "slow" photoconductivity effect severely limits the utilisation of the Ga2O3-based devices. The aim of this work is the investigation of the nature of this effect. The results of the photoinduced current rise and decay under 530 nm and 259 nm LED are measured in the HVPE-grown α-Ga2O3-based Schottky diode. Upon UV-illumination the photocurrent rise consists of three parallel processes: fast signal growth, slow growth and very slow decay with characteristic times near 70 ms, 40 s and 300 s respectively. Subsequent 530 nm LED illumination resulted in photoinduced current rise consisting of two mechanisms with characterisatic times 130 ms and 40 s on which a very slow decrease of the photocurrent amplitude with characteristic time of 1500 s was superimposed. 530 nm illumination stimulates this process. Protoinduced current relaxation analysis shows the presence of the deep levels with energies (EC - 0.17 eV). It is suggested that extremely slow relaxations can be associated with potential fluctuations near the Schottky barrier.Ga2O3 — широкозонный материал с рядом уникальных характеристик, которые делают его перспективным материалом фотоники: он оптически прозрачен для оптического и ближнего ультрафиолетового излучения, обладает высокими значениями пробивных напряжений и высокой радиационной стойкостью. Одним из недостатков, которые в настоящее время препятствуют использованию данного материала в солнечно-слепых фотодетекторах, является аномально большое время нарастания и спада фотопроводимости, которое может достигать сотен секунд. Такая «замедленная» фотопроводимость существенно ограничивает область применения этих материалов. Проведены исследования природы этого эффекта. Выполнены измерения времени нарастания и спада фотоиндуцированного тока в диодах Шотки на основе α-Ga2O3, выращенных методом HVPE на сапфире, при засветке светодиодами с длиной волны 259 и 530 нм. При засветке ультрафиолетовым излучением рост тока через фоточувствительную структуру из двух встречных диодов происходил в три этапа: достаточно быстрое нарастание с характерным временем 70 мс, медленный рост с характерным временем 40 с и затянутый спад с характерным временем порядка 300 с. При последующей засветке излучением зеленого цвета рост тока с характерным временем 130 мс и 40 с накладывался на стимулируемый засветкой медленный спад амплитуды максимального тока с характерным временем порядка 1500 с. Анализ релаксации тока показал наличие глубоких центров с энергией (EC – 0,17 эВ). Существенное замедление релаксации фотоиндуцированного тока можно связать с флуктуациями потенциала вблизи барьера Шотки

    Characteristics of hydrogen sensors based on thin tin dioxide films modified with gold

    No full text
    Effect of hydrogen in the concentration range from 10 to 2000 ppm on the characteristics of sensors based on thin films of tin dioxide modified with gold (Au/SnO2:Sb, Au) is studied in the thermo-cyclic mode at temperatures from 623 to 773 K and absolute humidity from 2.5 to 20 g/m3. Experimental data are discussed using expressions obtained within the framework of a model that takes into account the presence of three types of adsorbed particles (O¯, OH, and OH¯) on the surface of SnO2 nanocrystals. The characteristics of the sensors based on thin Pt/Pd/SnO2:Sb films (the first series) are compared with those of Au/SnO2:Sb, Au films (the second series). It is found that the degree of dissociation of molecular hydrogen into atoms during adsorption on the sensor under interaction with Au particles on the SnO2 surface is 4 times greater than that under interaction with Pt/Pd particles. The degree of dissociation of H2O molecules into hydrogen atoms and hydroxyl groups in pure moist air on the surface of the sensors of the second series is 1.6 times greater than that for the sensors of the first series. Thus, gold is a more effective stimulator of the dissociation of H2 and H2O molecules than platinum and palladium. A formula is obtained that describes more accurately the dependence of the response of the sensors of both series to the effect of hydrogen on the concentration of this gas and on the temperature of the measuring devices
    corecore