5 research outputs found

    TSPAN1 : a Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance

    Get PDF
    Altres ajuts: This work was supported by grants from the Instituto de Salud Carlos III, Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to J.P.R.), co-financed by the European Regional Fund (ERDF) and AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR (M.E.L.). Y.G.-M. and C.M. were granted by the VHIR and iP-FIS (ISCIII) fellowships respectively.Sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial-mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy

    The Differential Impact of SRC Expression on the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma

    Get PDF
    Aberrant SRC expression and activation is frequently detected in multiple cancers, and hence, targeting SRC has emerged as a promising therapeutic strategy. Different SRC inhibitors have demonstrated potent anti-tumor activity in preclinical models, although they largely lack clinical efficacy as monotherapy in late-stage solid tumors, including head and neck squamous cell carcinomas (HNSCC). Adequate selection and stratification of patients who may respond to and benefit from anti-SRC therapies is therefore needed to guide clinical trials and treatment efficacy. This study investigates the prognostic significance of active SRC expression in a homogeneous cohort of 122 human papillomavirus (HPV)-negative, surgically treated HNSCC patients. Immunohistochemical evaluation of the active form of SRC by means of anti-SRC Clone 28 monoclonal antibody was specifically performed and subsequently correlated with clinical data. The expression of p-SRC (Tyr419), total SRC, and downstream SRC effectors was also analyzed. Our results uncovered striking differences in the prognostic relevance of SRC expression in HNSCC patients depending on the tumor site. Active SRC expression was found to significantly associate with advanced disease stages, presence of lymph node metastasis, and tumor recurrences in patients with laryngeal tumors, but not in the pharyngeal subgroup. Multivariate Cox analysis further revealed active SRC expression as an independent predictor of cancer-specific mortality in patients with laryngeal carcinomas. Concordantly, expression of p-SRC (Tyr419) and the SRC substrates focal adhesion kinase (FAK) and the Arf GTPase-activating protein ASAP1 also showed specific associations with poor prognosis in the larynx. These findings could have important implications in ongoing Src family kinase (SFK)-based clinical trials, as these new criteria could help to improve patient selection and develop biomarker-stratified trials

    TSPAN1 : a Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance

    No full text
    Altres ajuts: This work was supported by grants from the Instituto de Salud Carlos III, Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to J.P.R.), co-financed by the European Regional Fund (ERDF) and AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR (M.E.L.). Y.G.-M. and C.M. were granted by the VHIR and iP-FIS (ISCIII) fellowships respectively.Sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial-mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy
    corecore