2,021 research outputs found
Quantum interference phenomena in the Casimir effect
We propose a definitive test of whether plates involved in Casimir
experiments should be modeled with ballistic or diffusive electrons--a
prominent controversy highlighted by a number of conflicting experiments. The
unambiguous test we propose is a measurement of the Casimir force between a
disordered quasi-2D metallic plate and a three-dimensional metallic system at
low temperatures, in which disorder-induced weak localization effects modify
the well-known Drude result in an experimentally tunable way. We calculate the
weak localization correction to the Casimir force as a function of magnetic
field and temperature and demonstrate that the quantum interference suppression
of the Casimir force is a strong, observable effect. The coexistence of weak
localization suppression in electronic transport and Casimir pressure would
lend credence to the Drude theory of the Casimir effect, while the lack of such
correlation would indicate a fundamental problem with the existing theory. We
also study mesoscopic disorder fluctuations in the Casimir effect and estimate
the width of the distribution of Casmir energies due to disorder fluctuations.Comment: 9 pages, 9 figure
Non-analytic behavior of the Casimir force across a Lifshitz transition in a spin-orbit coupled material
We propose the Casimir effect as a general method to observe Lifshitz
transitions in electron systems. The concept is demonstrated with a planar
spin-orbit coupled semiconductor in a magnetic field. We calculate the Casimir
force between two such semiconductors and between the semiconductor and a metal
as a function of the Zeeman splitting in the semiconductor. The Zeeman field
causes a Fermi pocket in the semiconductor to form or collapse by tuning the
system through a topological Lifshitz transition. We find that the Casimir
force experiences a kink at the transition point and noticeably different
behaviors on either side of the transition. The simplest experimental
realization of the proposed effect would involve a metal-coated sphere
suspended from a micro-cantilever above a thin layer of InSb (or another
semiconductor with large -factor). Numerical estimates are provided and
indicate that the effect is well within experimental reach.Comment: 5 pages + 6 page supplement; 5 figure
Crowdsourcing Linked Data on listening experiences through reuse and enhancement of library data
Research has approached the practice of musical reception in a multitude of ways, such as the analysis of professional critique, sales figures and psychological processes activated by the act of listening. Studies in the Humanities, on the other hand, have been hindered by the lack of structured evidence of actual experiences of listening as reported by the listeners themselves, a concern that was voiced since the early Web era. It was however assumed that such evidence existed, albeit in pure textual form, but could not be leveraged until it was digitised and aggregated. The Listening Experience Database (LED) responds to this research need by providing a centralised hub for evidence of listening in the literature. Not only does LED support search and reuse across nearly 10,000 records, but it also provides machine-readable structured data of the knowledge around the contexts of listening. To take advantage of the mass of formal knowledge that already exists on the Web concerning these contexts, the entire framework adopts Linked Data principles and technologies. This also allows LED to directly reuse open data from the British Library for the source documentation that is already published. Reused data are re-published as open data with enhancements obtained by expanding over the model of the original data, such as the partitioning of published books and collections into individual stand-alone documents. The database was populated through crowdsourcing and seamlessly incorporates data reuse from the very early data entry phases. As the sources of the evidence often contain vague, fragmentary of uncertain information, facilities were put in place to generate structured data out of such fuzziness. Alongside elaborating on these functionalities, this article provides insights into the most recent features of the latest instalment of the dataset and portal, such as the interlinking with the MusicBrainz database, the relaxation of geographical input constraints through text mining, and the plotting of key locations in an interactive geographical browser
Higher-order Laguerre-Gauss interferometry for gravitational-wave detectors with in situ mirror defects compensation
The use of higher-order Laguerre-Gauss modes has been proposed to decrease the influence of thermal noise in future generation gravitational-wave interferometric detectors. The main obstacle for their implementation is the degeneracy of modes with same order, which highly increases the requirements on the mirror defects, beyond the state-of-the-art polishing and coating techniques. In order to increase the mirror surface quality, it is also possible to act in situ, using a thermal source, sent on the mirrors after a proper shaping. In this paper we present the results obtained on a tabletop Fabry-Pérot Michelson interferometer illuminated with a LG_(3,3) mode. We show how an incoherent light source can reduce the astigmatism of one of the mirrors, increasing the quality of the beam in one of the Fabry-Pérot cavities and then the contrast of the interferometer. The system has the potential to reduce more complex defects and also to be used in future gravitational-wave detectors using conventional Gaussian beams
PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration
Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type andAag-transgenic (AagTg) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT andAagTgmice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. InAagTgmale and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much likeParp1gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT andAagTgmice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.National Institutes of Health (U.S.) (Award R01- CA075576)National Institutes of Health (U.S.) (Award R01-CA055042)National Institutes of Health (U.S.) (Award P30-ES02109)National Institutes of Health (U.S.) (Award P30- CA014051
Strange metal in the doped Hubbard model via percolation
Many strongly correlated systems, including high-temperature superconductors
such as the cuprates, exhibit strange metallic behavior in certain parameter
regimes characterized by anomalous transport properties that are irreconcilable
with a Fermi-liquid-like description in terms of quasiparticles. The Hubbard
model is a standard theoretical starting point to examine the properties of
such systems and also exhibits non-Fermi-liquid behavior in simulations. Here
we analytically study the two-dimensional hole-doped Hubbard model, first
identifying a percolation transition that occurs in the low-energy sector at
critical hole doping . We then use the critical properties near
this transition to rewrite the Hubbard Hamiltonian in a way that motivates a
large- model with strange metallic properties. In particular, we show that
this model has the linear-in- resistivity and power-law optical conductivity
observed in the strange metal regime of cuprates,
suggesting potential relevance for describing this important class of
materials.Comment: 17+2 pages, 6+1 figure
- …
