17 research outputs found
Renewal of thymocyte progenitors and emigration of thymocytes during avian development
The avian thymus is colonized by three waves of hemopoietic progenitors during embryogenesis. An in vivo thymus reconstitution assay based on intrathymic injection of irradiated chicks showed that cells of para-aortic foci were able to differentiate into T lymphocytes, confirming their putative role in the first wave of thymus colonization. This assay was also used to detect and to characterize T cell progenitors from the bone marrow which are involved in the second and third wave of thymus colonization. In the bone marrow, progenitors that differentiated into T cells were found in a subpopulation that expressed the molecules HEMCAM, c-kit and c128. Engraftment of thymus lobes into thymectomized young chick recipients showed that T cell progenitors are replaced in the thymus by subsequent waves of progenitors after hatching. Finally, analysis of thymocyte differentiation suggested that gamma delta and alpha beta T cells migrate from the thymus to the periphery in alternating waves
HEMCAM/CD146 downregulates cell surface expression of beta1 integrins
HEMCAM/gicerin, an immunoglobulin superfamily protein, is involved in homophilic and heterophilic adhesion. It interacts with NOF (neurite outgrowth factor), a molecule of the laminin family. Alternative splicing leads to mRNAs coding for HEMCAM with a short (HEMCAM-s) or a long cytoplasmic tail (HEMCAM-l). To investigate the cellular function of these two variants, we stably transfected murine fibroblasts with either form of HEMCAM. Expression of each isoform of this protein in L cells delayed proliferation and modified their adhesion properties to purified extracellular matrix proteins. Expression of either HEMCAM-s or HEMCAM-l inhibited integrin-dependent adhesion and spreading of fibroblasts to laminin 1, showing that this phenomenon did not depend on the cytoplasmic region. By contrast, L-cell adhesion and spreading to fibronectin depended on the HEMCAM isoform expressed. Flow cytometry and immunoprecipitation studies revealed that the expression of HEMCAM downregulated expression of the laminin-binding integrins alpha3beta1, alpha6beta1 and alpha7beta1, and fibronectin receptor alpha5beta1 from the cell surface. Semi-quantitative PCR and northern blot experiments showed that the expression of alpha6beta1 integrin modified by HEMCAM occurred at a translation or maturation level. Thus, our data demonstrate that HEMCAM regulates fibroblast adhesion by controlling beta1 integrin expression
Thyroid hormone signaling is highly heterogeneous during pre- and postnatal brain development
Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2
International audienceAndrogen signaling, via the androgen receptor (AR), is crucial in mediating prostate cancer (PCa) initiation and progression. Identifying new downstream effectors of the androgens/AR pathway will allow a better understanding of these mechanisms and could reveal novel biomarkers and/or therapeutic agents to improve the rate of patient survival. We compared the microRNA expression profiles in androgen-sensitive LNCaP cells stimulated or not with 1ânM R1881 by performing a high-throughput reverse transcriptase-quantitative PCR and found that miR-135a was upregulated. After androgen stimulation, we showed that AR directly activates the transcription of miR-135a2 gene by binding to an androgen response element in the promoter region. Our findings identify miR-135a as a novel effector in androgens/AR signaling. Using xenograft experiments in chick embryos and adult male mice, we showed that miR-135a overexpression decreases in vivo invasion abilities of prostate PC-3 cells. Through in vitro wound-healing migration and invasion assays, we demonstrated that this effect is mediated through downregulating ROCK1 and ROCK2 expression, two genes that we characterized as miR-135a direct target genes. In human surgical samples from prostatectomy, we observed that miR-135a expression was lower in tumoral compared with paired adjacent normal tissues, mainly in tumors classified with a high Gleason score (â©Ÿ8). Moreover, miR-135a expression is lower in invasive tumors, showing extraprostatic extension, as compared with intraprostatic localized tumors. In tumor relative to normal glands, we also showed a more frequently higher ROCK1 protein expression determined using a semi-quantitative immunohistochemistry analysis. Therefore, in tumor cells, the lower miR-135a expression could lead to a higher ROCK1 protein expression, which could explain their invasion abilities. The highlighted relationship between miR-135a expression level and the degree of disease aggressiveness suggests that miR-135a may be considered as a prognostic marker in human PCa.Oncogene advance online publication, 28 July 2014; doi:10.1038/onc.2014.222
A combined approach identifies a limited number of new thyroid hormone target genes in post-natal mouse cerebellum
Thyroid hormone receptor α is a molecular switch of cardiac function between fetal and postnatal life
Thyroid hormones are involved in the regulation of many physiological processes and regulate gene transcription by binding to their nuclear receptors TRα and TRÎČ. In the absence of triiodothyronine (T3), the unliganded receptors (aporeceptors) do bind DNA and repress the transcription of target genes. The role of thyroid hormone aporeceptors as repressors was observed in hypothyroid adult mice, but its physiological relevance in nonpathological hypothyroid conditions remained to be determined. Here we show that, in the normal mouse fetus, TRα aporeceptors repress heart rate as well as the expression of TRÎČ and several genes encoding ion channels involved in cardiac contractile activity. Right after birth, when T3 concentration sharply increases, liganded TRα (holoreceptors) turn on the expression of some of these same genes concomitantly with heart rate increase. These data describe a physiological situation under which conversion of TRα from apo-receptors into holo-receptors, upon changes in T3 availability, plays a determinant role in a developmental process
Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2
Quantification of T-cell progenitors during ontogeny: thymus colonization depends on blood delivery of progenitors
An in vivo thymus reconstitution assay based on intrathymic injection of hematopoietic progenitors into irradiated chicks was used to determine the number of T-cell progenitors in peripheral blood, paraaortic foci, bone marrow (BM), and spleen during ontogeny. This study allowed us to analyze the regulation of thymus colonization occurring in three waves during embryogenesis. It confirmed that progenitors of the first wave of thymus colonization originate from the paraaortic foci, whereas progenitors of the second and the third waves originate from the BM. The analysis of the number of T-cell progenitors indicates that each wave of thymus colonization is correlated with a peak number of T-cell progenitors in peripheral blood, whereas they are almost absent during the periods defined as refractory for colonization. Moreover, injection of T-cell progenitors into the blood circulation showed that they homed into the thymus without delay during the refractory periods. Thus, thymus colonization kinetics depend mainly on the blood delivery of T-cell progenitors during embryogenesis