716 research outputs found

    Screening for potential effects of endocrine-disrupting chemicals in peri-urban creeks and rivers in Melbourne, Australia using mosquitofish and recombinant receptor-reporter gene assays

    Get PDF
    Sexually mature male mosquitofish (Gambusia holbrooki) were collected from various sites around Melbourne in 2009 to evaluate the performance of gonopodial indices as a biomarker for endocrine disruption in Melbourne's waterways. The mosquitofish indices assessed were body length (BL), gonopodial length (GL)/BL ratio, ray 4:6 ratio and the absence or presence of hooks and serrae, and these varied between sites. The study was complemented by measurements of estrogenic, retinoid, thyroid and aryl hydrocarbon (AhR) receptor activities of the water. Male mosquitofish were 16.3-21.5 mm in length, and although there was a statistically significant positive relationship showing that bigger fish had longer gonopodia than small fish (r2 = 0.52, p < 0.001), there were few significant differences in GL/BL ratio of fish between sites. Measured estrogenic activity was mostly in the range 0.1-1.7 ng/L EEQ, with one site having much higher levels (similar to 12 ng/L EEQ). Aryl hydrocarbon (AhR) receptor activity was observed in all water samples (7-180 ng/L beta NF EQ), although there was no consistent pattern in the level of AhR activity observed, i.e., 'clean' sites were as likely to return a high AhR activity response as urban or wastewater treatment plant (WWTP)-impacted sites. There was no correlation between measurements of receptor actvity and gonopodial length (GL):BL ratio and BL. We conclude that the mosquitofish gonopodia only fulfills part of the criteria for biomarker selection for screening. The mosquitofish indices assessed were cheap and easy-to-perform procedures; however, there is no baseline data from the selected sites to evaluate whether differences in the morpholical indices observed at a site were a result of natural selection in the population or due to estrogenic exposure

    The UN Global Compacts and the Common European Asylum System: Coherence or Friction?

    Get PDF
    This paper examines the ā€œprotective potentialā€ of the Global Compacts on Refugees and Migrants visĆ -vis existing commitments to fundamental rights within the European Union (EU). The relationship between the two normative frameworks is scrutinised to establish the extent to which the two might be mutually supportive or contradictory, since this determines the Compactsā€™ capacity to inform the interpretation of EU fundamental rights within the Common European Asylum System (CEAS). This paper explores this protective potential through three of the Compactsā€™ key guiding principles: respect for human rights and the rule of law, the principle of non-regression, and the principle of non-discrimination. The Compactsā€™ commitments to the first two are presented as sites of coherence where the Compacts concretely express pre-existing protections within EU law and provide a blueprint for implementation in the migration sphere. Yet, the Compactsā€™ principle of non-discrimination reveals an area of friction with EU primary law. It is argued that the implementation of this principle can address the inherently discriminatory system underpinning EU law. Within the EU, rather than undermining international and national human rights obligations, the Compacts present an opportunity to refine the implementation of existing EU fundamental rights obligations applicable to migrants and refugees

    Less Invasive Phenotype Found in Isocitrate Dehydrogenase-mutated Glioblastomas than in Isocitrate Dehydrogenase Wild-Type Glioblastomas: A Diffusion-Tensor Imaging Study

    Get PDF
    PURPOSE: To explore the diffusion-tensor (DT) imaging-defined invasive phenotypes of both isocitrate dehydrogenase (IDH-1)-mutated and IDH-1 wild-type glioblastomas. MATERIALS AND METHODS: Seventy patients with glioblastoma were prospectively recruited and imaged preoperatively. All patients provided signed consent, and the local research ethics committee approved the study. Patients underwent surgical resection, and tumor samples underwent immunohistochemistry for IDH-1 R132H mutations. DT imaging data were coregistered to the anatomic magnetic resonance study and reconstructed to provide the anisotropic and isotropic components of the DT. The invasive phenotype was determined by using previously published criteria and correlated with IDH-1 mutation status by using the Freeman-Halton extension of the Fisher exact probability test. RESULTS: Nine patients had an IDH-1 mutation and 61 had IDH-1 wild type. All of the patients with IDH-1 mutation had a minimally invasive DT imaging phenotype. Among the IDH-1 wild-type tumors, 42 of 61 (69%) were diffusively invasive glioblastomas, 14 of 61 (23%) were locally invasive, and five of 61 (8%) were minimally invasive (P < .001). CONCLUSION: IDH-mutated glioblastomas have a less invasive phenotype compared with IDH wild type. This finding may have implications for individualizing the extent of surgical resection and radiation therapy volumes.NIHR Clinician Scientist Fellowship (NIHR/CS/009/011); Chang Gung Medical Foundation; Chang Gung Memorial Hospital; Commonwealth Scholarship Commission; Cambridge Commonwealth Overseas Trust; NIHR Cambridge Biomedical Research Centr

    Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    Get PDF
    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ā‰¤ 1.9%. The uniformity of the image quality performance has been further investigated in a typical X-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practise. Finally, in order to compare the detection capability of this novel APS with the currently used technology (i.e. FPIs), theoretical evaluation of the Detection Quantum Efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, X-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications

    A critical control point approach to the removal of chemicals of concern from water for reuse

    Get PDF
    The reuse of water in a range of potable and non-potable applications is an important factor in the augmentation of water supply and in improving water security and productivity worldwide. A key hindrance to the reuse of water is the cost of compliance testing and process validation associated with ensuring that pathogen and chemicals in the feedwater are removed to a level that ensures no acute or chronic health and/or environmental effects. The critical control point (CCP) approach is well established and widely adopted by water utilities to provide an operational and risk management framework for the removal of pathogens in the treatment system. The application of a CCP approach to barriers in a treatment system for the removal of chemicals is presented. The application exemplar is to a small community wastewater treatment system that aims to produce potable quality water from a secondary treated wastewater effluent, however, the concepts presented are generic. The example used seven treatment barriers, five of which were designed and operated as CCP barriers for pathogens. The work demonstrates a method and risk management framework by which three of the seven barriers could also include a CCP approach for the removal of chemicals. Analogous to a CCP approach for pathogens, the potential is to reduce the use of chemical analysis as a routine determinant of performance criteria. The operational deployment of a CCP approach for chemicals was augmented with the development of a decision tree encompassing the classification of chemicals and the total removal credits across the treatment train in terms of the mechanistic removal of chemicals for each barrier. Validation of the approach is shown for an activated sludge, ozone and reverse osmosis barrier

    Observations on metal concentrations in commercial landings of two species of tilapia (Oreochromis mossambicus and Oreochromis niloticus) from reservoirs in six river basins in Sri Lanka

    Full text link
    Samples of the muscle of two species of tilapia (Oreochromis mossambicus and O. niloticus; 17-20 cm length) were obtained from at least one reservoir in each of the six river basins (Aruvi Aru, Kala Oya, Kirindi Oya, Ma Oya, Mahaweli, and Walawe Ganga catchments) in Sri Lanka. The metals Ca, Cu, Fe, K, Mg, Mn, Na, and Zn were consistently detected in the muscle tissue. Overall, there were few differences in the concentration of metals between the two species of fish, although there were also some statistically significant differences (p &lt; 0.05) in the concentrations of some metals in fish obtained from some of the reservoirs. Aruvi Aru stands out as a river basin in which the two fish species have significantly lower concentration of metals when compared to other river basins. The concentration of the metals studied were below WHO and FSANZ guideline values for fish, suggesting that the consumption of the metals found in tilapia from these reservoirs poses little risk to human health. <br /
    • ā€¦
    corecore