51 research outputs found

    Enhancing accuracy and precision of transparent synthetic soil modelling

    Get PDF
    Over recent years non-intrusive modelling techniques have been developed to investigate soil-structure interaction problems of increasingly complex geometry. This paper concerns the development of a small-scale, 1 g, modelling technique using a transparent analogue for soil with particle image velocimetry for internal displacement measurement. Larger model geometry achieved in this research using fine-grained transparent synthetic soils has led to an increased need for rigorous photogrammetric correction techniques. A correction framework, based upon a modified version of the pinhole camera model, is presented that corrects for lens and camera movement induced errors as well as scaling from image space to object space. An additional statistical approach is also developed to enhance the system precision, by minimising the impact of increased non-coplanarity between the photogrammetry control plane and the target plane. The enhanced data correction and statistical precision is demonstrated using a case study examining the failure mechanism around a double helical screw pile installed in transparent synthetic soil representative of a soft clay

    Enantiomer-specific pharmacokinetics of D,L-3-hydroxybutyrate:Implications for the treatment of multiple acyl-CoA dehydrogenase deficiency

    Get PDF
    D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax: 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax: 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB

    Docking of LDCVs Is Modulated by Lower Intracellular [Ca2+] than Priming

    Get PDF
    Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca2+ concentration ([Ca2+]i). However, the functional implications of [Ca2+]i in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca2+]i. Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca2+]i. We found that a free [Ca2+]i of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca2+]i of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca2+ concentrations, with docking efficiency being the most robust at 500 nM

    Direct Regulation of Striated Muscle Myosins by Nitric Oxide and Endogenous Nitrosothiols

    Get PDF
    , both through activation of guanylyl cyclase and through modification of cysteines in proteins to yield S-nitrosothiols. While NO affects the contractile apparatus directly, the identities of the target myofibrillar proteins remain unknown. Here we report that nitrogen oxides directly regulate striated muscle myosins..These data show that nitrosylation signaling acts as a molecular “gear shift” for myosin—an altogether novel mechanism by which striated muscle and cellular biomechanics may be regulated

    Fast, Multiphase Volume Adaptation to Hyperosmotic Shock by Escherichia coli

    Get PDF
    All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15–20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery

    Ectopic pregnancy secondary to in vitro fertilisation-embryo transfer: pathogenic mechanisms and management strategies

    Get PDF
    corecore