77 research outputs found

    Non-Darcy flow characteristics of water as influenced by clay concentration

    Get PDF
    The flow of water through saturated samples of montmorillonite and kaolinite was studied to help clarify the existence and nature of non-Darcian flow. No threshold gradients were found in any of the samples studied. Non-Darcy flow was found in 9, 30 and 40 weight percent montmorillonite samples but not in a 50 weight percent montmorillonite or in kaolinite samples. The possible causes of the non-Darcian flow are discussed. A refined technique using a pressure transducer was developed to measure hydraulic conductivities. The hydraulic conductivities of several types of samples under varying conditions were measured. Transport equations for convective diffusion in porous media were derived and tested for capillaries, porous diaphragms, sand columns and clay plugs.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Get PDF
    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation

    Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    Get PDF
    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha−1 and g plant−1) on plant population (plants m−2). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Ym (Mg ha−1) for maximum yield at high plant population and c (m2 plant−1) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, xc = 1/c (plants m−2). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of xc were very similar for the three field studies with the same crop species

    Physics on the edge: contour dynamics, waves and solitons in the quantum Hall effect

    Full text link
    We present a theoretical study of the excitations on the edge of a two-dimensional electron system in a perpendicular magnetic field in terms of a contour dynamics formalism. In particular, we focus on edge excitations in the quantum Hall effect. Beyond the usual linear approximation, a non-linear analysis of the shape deformations of an incompressible droplet yields soliton solutions which correspond to shapes that propagate without distortion. A perturbative analysis is used and the results are compared to analogous systems, like vortex patches in ideal hydrodynamics. Under a local induction approximation we find that the contour dynamics is described by a non-linear partial differential equation for the curvature: the modified Korteweg-de Vries equation. PACS number(s): 73.40.Hm, 02.40.Ma, 03.40.Gc, 11.10.LmComment: 15 pages, 12 embedded figures, submitted to Phys. Rev.

    Solitons on the edge of a two-dimensional electron system

    Full text link
    We present a study of the excitations of the edge of a two-dimensional electron droplet in a magnetic field in terms of a contour dynamics formalism. We find that, beyond the usual linear approximation, the non-linear analysis yields soliton solutions which correspond to uniformly rotating shapes. These modes are found from a perturbative treatment of a non-linear eigenvalue problem, and as solutions to a modified Korteweg-de Vries equation resulting from a local induction approximation to the nonlocal contour dynamics. We discuss applications to the edge modes in the quantum Hall effect.Comment: 4 pages, 2 eps figures (included); to appear in Phys. Rev. Letter

    Christianity as Public Religion::A Justification for using a Christian Sociological Approach for Studying the Social Scientific Aspects of Sport

    Get PDF
    The vast majority of social scientific studies of sport have been secular in nature and/or have tended to ignore the importance of studying the religious aspects of sport. In light of this, Shilling and Mellor (2014) have sought to encourage sociologists of sport not to divorce the ‘religious’ and the ‘sacred’ from their studies. In response to this call, the goal of the current essay is to explore how the conception of Christianity as ‘public religion’ can be utilised to help justify the use of a Christian sociological approach for studying the social scientific aspects of sport. After making a case for Christianity as public religion, we conclude that many of the sociological issues inherent in modern sport are an indirect result of its increasing secularisation and argue that this justifies the need for a Christian sociological approach. We encourage researchers to use the Bible, the tools of Christian theology and sociological concepts together, so to inform analyses of modern sport from a Christian perspective

    Accumulation of biomass and mineral elements with calendar time by cotton: application of the expanded growth model.

    Get PDF
    Accumulation of plant biomass (Mg ha(-1)) with calendar time (wk) occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements (kg ha(-1)) such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. Field data from literature for the warm-season annual cotton (Gossypium hirsutum L.) are used in this analysis. The expanded growth model is used to describe accumulation of biomass and mineral elements with calendar time. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen, phosphorus, and potassium. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. The expanded growth model describes field data from California and Alabama rather well. Furthermore, all model parameters were common for the two sites with the exception of the yield factor A which accounts for differences in soil types, environmental conditions, fertilizer levels, and plant population

    Comment se gouvernent les politiques publiques dans les pays étrangers ?

    No full text
    <p>Curves are constructed from Eq. 7 and from parameters listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0095934#pone-0095934-t002" target="_blank">Table 2</a>.</p
    • …
    corecore