6,901 research outputs found

    Geology of the Mink Creek Region, Idaho

    Get PDF
    The Mink Creek region is centered 14 miles northeast of Preston in Franklin County, Idaho (see Index Map, Figure 1). The area of this report comprises approximately 70 square miles. It is bounded on the north and south by parallels 42°17\u27 and 42°11\u27 North Latitude and on the east and west by meridians 111°37\u27 and 111°49\u27. The easternmost part of the area is located in the Bear River Range and is part of the Cache National Forest. The region is readily accessible. A paved Idaho State Highway goes through the center of the area and State Highway 34 skirts the nothwest corner. Numerous dirt roads, jeep roads, and cattle trails traverse the area

    "We Have Degrees in Violence": A Report on Torture and Human Rights Abuses in Zimbabwe

    Get PDF
    Provides evidence, based on forensic evaluations by international health professionals, that the Zimbabwean government is systematically using torture and violence to suppress political opposition

    Theory of sub-10 fs Generation in Kerr-lens Mode-locked Solid-State Lasers with a Coherent Semiconductor Absorber

    Full text link
    The results of the study of ultra-short pulse generation in continuous-wave Kerr-lens mode-locked (KLM) solid-state lasers with semiconductor saturable absorbers are presented. The issues of extremely short pulse generation are addressed in the frames of the theory that accounts for the coherent nature of the absorber-pulse interaction. We developed an analytical model that bases on the coupled generalized Landau-Ginzburg laser equation and Bloch equations for a coherent absorber. We showed, that in the absence of KLM semiconductor absorber produces 2pi - non-sech-pulses of self-induced transparency, while the KLM provides an extremely short sech-shaped pulse generation. 2pi- and pi-sech-shaped solutions and variable-area chirped pulses have been found. It was shown, that the presence of KLM removes the limitation on the minimal modulation depth in absorber. An automudulational stability and self-starting ability were analyzed, too.Comment: revised version, 18 pages, 6 figures, LaTeX, Maple program is available on http://www.geocities.com/optomaple

    Cortical neuronal loss and hippocampal sclerosis are not detected by voxel-based morphometry in individual epilepsy surgery patients

    Get PDF
    Voxel-based morphometry (VBM) has detected differences between brains of groups of patients with epilepsy and controls, but the sensitivity for detecting subtle pathological changes in single subjects has not been established. The aim of the study was to test the sensitivity of VBM using statistical parametric mapping (SPM5) to detect hippocampal sclerosis (HS) and cortical neuronal loss in individual patients. T1-weighted volumetric 1.5 T MR images from 13 patients with HS and laminar cortical neuronal loss were segmented, normalised and smoothed using SPM5. Both modulated and non-modulated analyses were performed. Comparisons of one control subject against the rest (n ¼ 23) were first performed to ascertain the smoothing level with the lowest number of SPM changes in controls. Each patient was then compared against the whole control group. The lowest number of SPM changes in control subjects was found at a smoothing level of 10 mm full width half maximum for modulated and non-modulated data. In the patient group, no SPM abnormalities were found in the affected temporal lobe or hippocampus at this smoothing level. At lower smoothing levels there were numerous SPM findings in controls and patients. VBM did not detect any abnormalities associated with either laminar cortical neuronal loss or HS. This may be due to normalisation and smoothing of images and low statistical power in areas with larger interindividual differences. This suggests that the methodology may currently not be suitable to detect particular occult abnormalities possibly associated with seizure onset zone in individual epilepsy patients with unremarkable standard structural MRI

    Lunar resources: Oxygen from rocks and soil

    Get PDF
    The first set of hydrogen reduction experiments to use actual lunar material was recently completed. The sample, 70035, is a coarse-grained vesicular basalt containing 18.46 wt. percent FeO and 12.97 wt. percent TiO2. The mineralogy includes pyroxene, ilmenite, plagioclase, and minor olivine. The sample was crushed to a grain size of less than 500 microns. The crushed basalt was reduced with hydrogen in seven tests at temperatures of 900-1050 C and pressures of 1-10 atm for 30-60 minutes. A capacitance probe, measuring the dew point of the gas stream, was used to follow reaction progress. Experiments were also conducted using a terrestrial basalt similar to some lunar mare samples. Minnesota Lunar Simulant (MLS-1) contains 13.29 wt. percent FeO, 2.96 wt. percent Fe2O3, and 6.56 wt. percent TiO2. The major minerals include plagioclase, pyroxene, olivine, ilmenite, and magnetite. The rock was ground and seived, and experiments were run on the less than 74- and 500-1168-micron fractions. Experiments were also conducted on less than 74-micron powders of olivine, pyroxene, synthetic ilmenite, and TiO2. The terrestrial rock and mineral samples were reduced with flowing hydrogen at 1100 C in a microbalance furnace, with reaction progress monitored by weight loss. Experiments were run at atmospheric pressure for durations of 3-4 hr. Solid samples from both sets of experiments were analyzed by Mossbauer spectroscopy, petrographic microscopy, scanning electron microscopy, tunneling electron microscopy, and x-ray diffraction. Apollo 17 soil 78221 was examined for evidence of natural reduction in the lunar environment. This sample was chosen based on its high maturity level (I sub s/FeO = 93.0). The FeO content is 11.68 wt. percent and the TiO2 content is 3.84 wt. percent. A polished thin section of the 90-150 micron size fraction was analyzed by petrographic microscopy and scanning electron microscopy

    Two Aspects of the Mott-Hubbard Transition in Cr-doped V_2O_3

    Get PDF
    The combination of bandstructure theory in the local density approximation with dynamical mean field theory was recently successfully applied to V2_2O3_3 -- a material which undergoes the f amous Mott-Hubbard metal-insulator transition upon Cr doping. The aim of this sh ort paper is to emphasize two aspects of our recent results: (i) the filling of the Mott-Hubbard gap with increasing temperature, and (ii) the peculiarities of the Mott-Hubbard transition in this system which is not characterized by a diver gence of the effective mass for the a1ga_{1g}-orbital.Comment: 2 pages, 3 figures, SCES'04 conference proceeding

    The effect of multiple sclerosis on carotid baroreflex control of heart rate and blood pressure

    Get PDF
    Multiple sclerosis (MS) is marked by conduction abnormalities within the central nervous system that can lead to impaired blood pressure regulation. However, the impact of this disease on dynamic neural control—responsiveness and timing (i.e., latency)—of blood pressure has not been examined. Utilizing a variable neck chamber system, we tested the hypothesis that patients with MS (MS: n=4) exhibit an altered response following baroreflex perturbation compared to sex and age matched healthy controls (CON: n=4). At rest, 5-sec pulses of neck suction (NS; -60 Torr) and neck pressure (NP; +40 Torr) were applied to simulate carotid hypertension and hypotension, respectively. Mean arterial pressure (MAP; Finometer) and heart rate (HR) were continuously measured in response to the perturbations. Carotid baroreflex (CBR) latencies (i.e., time-to-peak responses) were examined using carotid-cardiac (peak HR responses), carotid-vasomotor (peak MAP responses), and change in MAP at the peak HR response of the corresponding stimuli (MAP@HRpeak), all of which were not significant for both NP and NS. Following NS, responses in MAP (MS: -12±5, CON: -10±3 mmHg; p=0.43) and HR (MS: -9±3, CON: -8±4 BPM; p=0.58) were similar between groups. Following administration of NP, HR responses (MS: 4±2, CON: 5±4 BPM; p=0.47) were no different. However, the differences found in MAP were significant (MS: 5±2, CON: 8±2 mmHg; p=0.05), providing some evidence that baroreceptor responsiveness may be compromised when faced with a hypotensive challenge

    VFR-into-IMC: An Analysis of Two Training Protocols on Weather-Related Posttest Scores

    Get PDF
    According to the Aircraft Owners and Pilots Association Air Safety Institute, 264 accidents were identified as continued visual flight rules (VFR) into instrument meteorological conditions (IMC), during the past ten years. Approximately 89% of those VFR-into-IMC accidents were fatal, causing hundreds of deaths. VFR-into-IMC has been a major concern for the general aviation community, prompting focused efforts. Research, data analyses, outreach, training, and education are recommended practices to address risks associated with VFR-into-IMC. Researchers of the current study sought to evaluate the cause and effect relationship between two training protocols and weather-related posttest scores. A pretest–posttest experimental design was utilized at two testing locations. Participants were randomly assigned to one of three groups: a control group, an interactive online training group, or an interactive workshop group. An analysis of covariance was used to determine whether there was a significant difference between mean posttest scores among the experimental groups while controlling for pretest scores. The treatments did not appear to significantly increase posttest scores after controlling for pretest scores, at either experiment location. Though the results of this study did not yield anticipated findings, much was learned and potentially helpful to general aviation researchers seeking to mitigate VFR-into-IMC encounters. Recommendations for future research and practices are discussed
    corecore