42,223 research outputs found

    Did U.S. Bank Supervisors Get Tougher During the Credit Crunch? Did They Get Easier During the Banking Boom? Did It Matter to Bank Lending?

    Get PDF
    We test three hypotheses regarding changes in supervisory toughness' and their effects on bank lending. The data provide modest support for all three hypotheses that there was an increase in toughness during the credit crunch period (1989-1992), that there was a decline in toughness during the boom period (1993-1998), and that changes in toughness, if they occurred, affected bank lending. However, all of the measured effects are small, with 1% or less of loans receiving harsher or easier classification, about 3% of banks receiving better or worse CAMEL ratings, and bank lending being changed by 1% or less of assets.

    Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O_2

    Full text link
    We extend the model of ferromagnetic superexchange in dilute magnetic semiconductors to the ferromagnetically ordered highly insulating compounds (dilute magnetic dielectrics). The intrinsic ferromagnetism without free carriers is observed in oxygen-deficient films of anatase TiO_2 doped with transition metal impurities in cation sublattice. We suppose that ferromagnetic order arises due to superexchange between complexes [oxygen vacancies + magnetic impurities], which are stabilized by charge transfer from vacancies to impurities. The Hund rule controls the superexchange via empty vacancy related levels so that it becomes possible only for the parallel orientation of impurity magnetic moments. The percolation threshold for magnetic ordering is determined by the radius of vacancy levels, but the exchange mechanism does not require free carriers. The crucial role of the non-stoichiometry in formation of the ferromagnetism makes the Curie temperatures extremely sensitive to the methods of sample preparation.Comment: 18 pages, 2 figure

    Combining Molecular Dynamics with Lattice-Boltzmann: A Hybrid Method for the Simulation of (Charged) Colloidal Systems

    Full text link
    We present a hybrid method for the simulation of colloidal systems, that combines molecular dynamics (MD) with the Lattice-Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point (with a velocity V(r) at any off-lattice position r is interacting with the neighboring eight LB nodes by a frictional force F=\xi_0(V(r)-u(r)) with \xi_0 being a friction force and u(r) being the velocity of the fluid at the position r. Thermal fluctuations are introduced in the framework of fluctuating hydrodynamics. This coupling scheme has been proposed recently for polymer systems by Ahlrichs and D"unweg [J. Chem. Phys. 111, 8225 (1999)]. We investigate several properties of a single colloidal particle in a LB fluid, namely the effective Stokes friction and long time tails in the autocorrelation functions for the translational and rotational velocity. Moreover, a charged colloidal system is considered consisting of a macroion, counterions and coions that are coupled to a LB fluid. We study the behavior of the ions in a constant electric field. In particular, an estimate of the effective charge of the macroion is yielded from the number of counterions that move with the macroion in the direction of the electric field.Comment: 37 pages, 12 figure

    Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires

    Full text link
    The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is studied using the Landauer formalism for thermal transport. The conductance shows a crossover from localized to Ohmic behavior, just as for electrons, but the nature of this crossover is modified by delocalization of phonons at low frequency. A scalable numerical transfer-matrix technique is developed and applied to model quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal conductivity data on semiconductor nanowires, showing an unexpected linear dependence, can be understood through a model that combines incoherent surface scattering for short-wavelength phonons with nearly ballistic long-wavelength phonons. It is also found that even when strong phonon localization effects would be observed if defects are distributed throughout the wire, localization effects are much weaker when defects are localized at the boundary, as in current experiments.Comment: 13 page

    A 17-year time-series of fungal environmental DNA from a coastal marine ecosystem reveals long-term seasonal-scale and inter-annual diversity patterns.

    Get PDF
    Changing patterns in diversity are a feature of many habitats, with seasonality a major driver of ecosystem structure and function. In coastal marine plankton-based ecosystems, seasonality has been established through long-term time-series of bacterioplankton and protists. Alongside these groups, fungi also inhabit coastal marine ecosystems. If and how marine fungi show long-term intra- and inter-annual diversity patterns is unknown, preventing a comprehensive understanding of marine fungal ecology. Here, we use a 17-year environmental DNA time-series from the English Channel to determine long-term marine fungal diversity patterns. We show that fungal community structure progresses at seasonal and monthly scales and is only weakly related to environmental parameters. Communities restructured every 52-weeks suggesting long-term stability in diversity patterns. Some major marine fungal genera have clear inter-annual recurrence patterns, re-appearing in the annual cycle at the same period. Low relative abundance taxa that are likely non-marine show seasonal input to the coastal marine ecosystem suggesting land-sea exchange regularly takes place. Our results demonstrate long-term intra- and inter-annual marine fungal diversity patterns. We anticipate this study could form the basis for better understanding the ecology of marine fungi and how they fit in the structure and function of the wider coastal marine ecosystem
    corecore