677 research outputs found
Entanglement of photons
It is argued that the title of this paper represents a misconception.
Contrary to widespread beliefs it is electromagnetic field modes that are
``systems'' and can be entangled, not photons. The amount of entanglement in a
given state is shown to depend on redefinitions of the modes; we calculate the
minimum and maximum over all such redefinitions for several examples.Comment: 5 pages ReVTe
Decoupling of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy
The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact
diagonalization of small systems in the regime of weak inter-chain coupling. A
gapless phase with quasi long-range spiral correlations has been predicted to
occur in this regime if easy-plane (XY) anisotropy is present. We find in
general that the finite zig-zag ladder shows three phases: a gapless collinear
phase, a dimer phase and a spiral phase. We study the level crossings of the
spectrum,the dimer correlation function, the structure factor and the spin
stiffness within these phases, as well as at the transition points. As the
inter-chain coupling decreases we observe a transition in the anisotropic XY
case from a phase with a gap to a gapless phase that is best described by two
decoupled antiferromagnetic chains. The isotropic and the anisotropic XY cases
are found to be qualitatively the same, however, in the regime of weak
inter-chain coupling for the small systems studied here. We attribute this to a
finite-size effect in the isotropic zig-zag case that results from
exponentially diverging antiferromagnetic correlations in the weak-coupling
limit.Comment: to appear in Physical Review
Self-energy and Self-force in the Space-time of a Thick Cosmic String
We calculate the self-energy and self-force for an electrically charged
particle at rest in the background of Gott-Hiscock cosmic string space-time. We
found the general expression for the self-energy which is expressed in terms of
the matrix of the scattering problem. The self-energy continuously falls
down outward from the string's center with maximum at the origin of the string.
The self-force is repulsive for an arbitrary position of the particle. It tends
to zero in the string's center and also far from the string and it has a
maximum value at the string's surface. The plots of the numerical calculations
of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization
Single crystalline films of bismuth-substituted ferrite garnets have been
synthesized by the liquid phase epitaxy method where GGG substrates are dipped
into the flux. The growth parameters are controlled to obtain films with
in-plane magnetization and virtually no domain activity, which makes them
excellently suited for magnetooptic imaging. The Faraday rotation spectra were
measured across the visible range of wavelengths. To interprete the spectra we
present a simple model based on the existence of two optical transitions of
diamagnetic character, one tetrahedral and one octahedral. We find excellent
agreement between the model and our experimental results for photon energies
between 1.77 and 2.53 eV, corresponding to wavelengths between 700 and 490 nm.
It is shown that the Faraday rotation changes significantly with the amount of
substituted gallium and bismuth. Furthermore, the experimental results suggest
that the magnetooptic response changes linearly with the bismuth substitution.Comment: 15 pages, 6 figures, published in Phys. Rev.
Fast Diffusion Process in Quenched hcp Dilute Solid He-He Mixture
The study of phase structure of dilute He - He solid mixture of
different quality is performed by spin echo NMR technique. The diffusion
coefficient is determined for each coexistent phase. Two diffusion processes
are observed in rapidly quenched (non-equilibrium) hcp samples: the first
process has a diffusion coefficient corresponding to hcp phase, the second one
has huge diffusion coefficient corresponding to liquid phase. That is evidence
of liquid-like inclusions formation during fast crystal growing. It is
established that these inclusions disappear in equilibrium crystals after
careful annealing.Comment: 7 pages, 3 figures, QFS200
Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes
Analytical approximations for and of a
quantized scalar field in static spherically symmetric spacetimes are obtained.
The field is assumed to be both massive and massless, with an arbitrary
coupling to the scalar curvature, and in a zero temperature vacuum state.
The expressions for and are divided into
low- and high-frequency parts. The contributions of the high-frequency modes to
these quantities are calculated for an arbitrary quantum state. As an example,
the low-frequency contributions to and are
calculated in asymptotically flat spacetimes in a quantum state corresponding
to the Minkowski vacuum (Boulware quantum state). The limits of the
applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde
Plankton lattices and the role of chaos in plankton patchiness
Spatiotemporal and interspecies irregularities in planktonic populations have been widely observed. Much research into the drivers of such plankton patches has been initiated over the past few decades but only recently have the dynamics of the interacting patches themselves been considered. We take a coupled lattice approach to model continuous-in-time plankton patch dynamics, as opposed to the more common continuum type reaction-diffusion-advection model, because it potentially offers a broader scope of application and numerical study with relative ease. We show that nonsynchronous plankton patch dynamics (the discrete analog of spatiotemporal irregularity) arise quite naturally for patches whose underlying dynamics are chaotic. However, we also observe that for parameters in a neighborhood of the chaotic regime, smooth generalized synchronization of nonidentical patches is more readily supported which reduces the incidence of distinct patchiness. We demonstrate that simply associating the coupling strength with measurements of (effective) turbulent diffusivity results in a realistic critical length of the order of 100 km, above which one would expect to observe unsynchronized behavior. It is likely that this estimate of critical length may be reduced by a more exact interpretation of coupling in turbulent flows
On Aharonov-Casher bound states
In this work bound states for the Aharonov-Casher problem are considered.
According to Hagen's work on the exact equivalence between spin-1/2
Aharonov-Bohm and Aharonov-Casher effects, is known that the
term cannot be neglected in the
Hamiltonian if the spin of particle is considered. This term leads to the
existence of a singular potential at the origin. By modeling the problem by
boundary conditions at the origin which arises by the self-adjoint extension of
the Hamiltonian, we derive for the first time an expression for the bound state
energy of the Aharonov-Casher problem. As an application, we consider the
Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the
expression for the harmonic oscillator energies and compare it with the
expression obtained in the case without singularity. At the end, an approach
for determination of the self-adjoint extension parameter is given. In our
approach, the parameter is obtained essentially in terms of physics of the
problem.Comment: 11 pages, matches published versio
Cosmology at the Millennium
One hundred years ago we did not know how stars generate energy, the age of
the Universe was thought to be only millions of years, and our Milky Way galaxy
was the only galaxy known. Today, we know that we live in an evolving and
expanding Universe comprising billions of galaxies, all held together by dark
matter. With the hot big-bang model, we can trace the evolution of the Universe
from the hot soup of quarks and leptons that existed a fraction of a second
after the beginning to the formation of galaxies a few billion years later, and
finally to the Universe we see today 13 billion years after the big bang, with
its clusters of galaxies, superclusters, voids, and great walls. The attractive
force of gravity acting on tiny primeval inhomogeneities in the distribution of
matter gave rise to all the structure seen today. A paradigm based upon deep
connections between cosmology and elementary particle physics -- inflation +
cold dark matter -- holds the promise of extending our understanding to an even
more fundamental level and much earlier times, as well as shedding light on the
unification of the forces and particles of nature. As we enter the 21st
century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial
Volume of Reviews of Modern Physic
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
- …
