92,820 research outputs found
Oxygen Absorption in Cooling Flows
The inhomogeneous cooling flow scenario predicts the existence of large
quantities of gas in massive elliptical galaxies, groups, and clusters that
have cooled and dropped out of the flow. Using spatially resolved, deprojected
X-ray spectra from the ROSAT PSPC we have detected strong absorption over
energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC
1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst
the largest nearby cooling flows in their respective classes and low Galactic
columns. Since no excess absorption is indicated for energies below ~0.4 keV
the most reasonable model for the absorber is warm, collisionally ionized gas
with T=10^{5-6} K where ionized states of oxygen provide most of the
absorption. Attributing the absorption only to ionized gas reconciles the large
columns of cold H and He inferred from Einstein and ASCA with the lack of such
columns inferred from ROSAT, and also is consistent with the negligible atomic
and molecular H inferred from HI, and CO observations of cooling flows. The
prediction of warm ionized gas as the product of mass drop-out in these and
other cooling flows can be verified by Chandra, XMM, and ASTRO-E.Comment: 4 pages (2 figures), Accepted for publication in ApJ Letters, no
significant changes from previous submitted versio
Vacuum polarization near cosmic string in RS2 brane world
Gravitational field of cosmic strings in theories with extra spatial
dimensions must differ significantly from that in the Einstein's theory. This
means that all gravity induced properties of cosmic strings need to be revised
too. Here we consider the effect of vacuum polarization outside a straight
infinitely thin cosmic string embedded in a RS2 brane world. Perturbation
technique combined with the method of dimensional regularization is used to
calculate for a massless scalar field.Comment: 8 pages, RevTeX
Traveling-wave tube circuit simplifies microwave relay
Circuit with a sawtooth-modulated traveling-wave tube, which acts as a frequency converter and as an amplifier, simplifies microwave transmission. Lower power losses and reduced size and weight are also realized in this circuit
Waveforms for Gravitational Radiation from Cosmic String Loops
We obtain general formulae for the plus- and cross- polarized waveforms of
gravitational radiation emitted by a cosmic string loop in transverse,
traceless (synchronous, harmonic) gauge. These equations are then specialized
to the case of piecewise linear loops, and it is shown that the general
waveform for such a loop is a piecewise linear function. We give several simple
examples of the waveforms from such loops. We also discuss the relation between
the gravitational radiation by a smooth loop and by a piecewise linear
approximation to it.Comment: 16 pages, 6 figures, Revte
Parallel discrete event simulation: A shared memory approach
With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models
Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha)
Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture
Liquid crystal director fluctuations and surface anchoring by molecular simulation
We propose a simple and reliable method to measure the liquid crystal surface
anchoring strength by molecular simulation. The method is based on the
measurement of the long-range fluctuation modes of the director in confined
geometry. As an example, molecular simulations of a liquid crystal in slab
geometry between parallel walls with homeotropic anchoring have been carried
out using the Monte Carlo technique. By studying different slab thicknesses, we
are able to calculate separately the position of the elastic boundary
condition, and the extrapolation length
Improving Medicaid Managed Care for Youth With Serious Behavioral Health Needs: A Quality Improvement Toolkit
Profiles successful initiatives by Medicaid managed care organizations in a collaboration to implement systems of care emphasizing early identification, coordination and management, and various services and supports in the least restrictive settings
A Closed-Form Expression for the Gravitational Radiation Rate from Cosmic Strings
We present a new formula for the rate at which cosmic strings lose energy
into gravitational radiation, valid for all piecewise-linear cosmic string
loops. At any time, such a loop is composed of straight segments, each of
which has constant velocity. Any cosmic string loop can be arbitrarily-well
approximated by a piecewise-linear loop with sufficiently large. The
formula is a sum of polynomial and log terms, and is exact when the
effects of gravitational back-reaction are neglected. For a given loop, the
large number of terms makes evaluation ``by hand" impractical, but a computer
or symbolic manipulator yields accurate results. The formula is more accurate
and convenient than previous methods for finding the gravitational radiation
rate, which require numerical evaluation of a four-dimensional integral for
each term in an infinite sum. It also avoids the need to estimate the
contribution from the tail of the infinite sum. The formula has been tested
against all previously published radiation rates for different loop
configurations. In the cases where discrepancies were found, they were due to
errors in the published work. We have isolated and corrected both the analytic
and numerical errors in these cases. To assist future work in this area, a
small catalog of results for some simple loop shapes is provided.Comment: 29 pages TeX, 16 figures and computer C-code available via anonymous
ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-10,
(section 7 has been expanded, two figures added, and minor grammatical
changes made.
- …
