1,373 research outputs found
The PLC: a logical development
Programmable Logic Controllers (PLCs) have been used to control industrial processes and equipment for over 40 years, having their first commercially recognised application in 1969. Since then there have been enormous changes in the design and application of PLCs, yet developments were evolutionary rather than radical. The flexibility of the PLC does not confine it to industrial use and it has been used for disparate non-industrial control applications . This article reviews the history, development and industrial applications of the PLC
Light spin-1/2 or spin-0 Dark Matter particles
We recall and precise how light spin-0 particles could be acceptable Dark
Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate
the (rather large) annihilation cross sections required, and show how they may
be induced by a new light neutral spin-1 boson U. If this one is vectorially
coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation
cross section into e+e- automatically includes a v_dm^2 suppression factor at
threshold, as desirable to avoid an excessive production of gamma rays from
residual Dark Matter annihilations. We also relate Dark Matter annihilations
with production cross sections in e+e- scatterings. Annihilation cross sections
of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same
expressions. Just as for spin-0, light spin-1/2 Dark Matter particles
annihilating into e+e- could be responsible for the bright 511 keV gamma ray
line observed by INTEGRAL from the galactic bulge.Comment: 10 page
A stochastic model for estimating sustainable limits to wildlife mortality in a changing world
Human-caused mortality of wildlife is a pervasive threat to biodiversity. Assessing the population-level impact of fisheries bycatch and other human-caused mortality of wildlife has typically relied upon deterministic methods. However, population declines are often accelerated by stochastic factors that are not accounted for in such conventional methods. Building on the widely applied potential biological removal (PBR) equation, we devised a new population modeling approach for estimating sustainable limits to human-caused mortality and applied it in a case study of bottlenose dolphins affected by capture in an Australian demersal otter trawl fishery. Our approach, termed sustainable anthropogenic mortality in stochastic environments (SAMSE), incorporates environmental and demographic stochasticity, including the dependency of offspring on their mothers. The SAMSE limit is the maximum number of individuals that can be removed without causing negative stochastic population growth. We calculated a PBR of 16.2 dolphins per year based on the best abundance estimate available. In contrast, the SAMSE model indicated that only 2.3–8.0 dolphins could be removed annually without causing a population decline in a stochastic environment. These results suggest that reported bycatch rates are unsustainable in the long term, unless reproductive rates are consistently higher than average. The difference between the deterministic PBR calculation and the SAMSE limits showed that deterministic approaches may underestimate the true impact of human-caused mortality of wildlife. This highlights the importance of integrating stochasticity when evaluating the impact of bycatch or other human-caused mortality on wildlife, such as hunting, lethal control measures, and wind turbine collisions. Although population viability analysis (PVA) has been used to evaluate the impact of human-caused mortality, SAMSE represents a novel PVA framework that incorporates stochasticity for estimating acceptable levels of human-caused mortality. It offers a broadly applicable, stochastic addition to the demographic toolbox to evaluate the impact of human-caused mortality on wildlife
Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - North Branch / East Main - Final
Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 4.83 miles of multi-size pipeline to replace a segment of the North Branch / East Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 48-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters.
Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 5,838 ac-ft of water per year and 3,293,049,926 BTUs (965,138 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be 0.0000392 per BTU (30.68 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is 0.186 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.58
Quasiparticle contribution to heat carriers relaxation time in DyBaCuO from heat diffusivity measurements
It is shown that the controversy on phonons or electrons being the most
influenced heat carriers below the critical temperature of high-T
superconductors can be resolved. Electrical and thermal properties of the same
DyBaCuO monodomain have been measured for two highly different
oxygenation levels. While the oxygenated sample DyBaCuO has very
good superconducting properties ( K), the DyBaCuO
sample exhibits an insulator behavior. A careful comparison between
measurements of the {\bf thermal diffusivity} of both samples allows us to
extract the electronic contribution. This contribution to the relaxation time
of heat carriers is shown to be large below and more sensitive to the
superconducting state than the phonon contribution.Comment: 13 pages, 6 figure
MeV-mass dark matter and primordial nucleosynthesis
The annihilation of new dark matter candidates with masses in the MeV
range may account for the galactic positrons that are required to explain the
511 keV -ray flux from the galactic bulge. We study the impact of
MeV-mass thermal relic particles on the primordial synthesis of H, He,
and Li. If the new particles are in thermal equilibrium with neutrinos
during the nucleosynthesis epoch they increase the helium mass fraction for
m_X\alt 10 MeV and are thus disfavored. If they couple primarily to the
electromagnetic plasma they can have the opposite effect of lowering both
helium and deuterium. For --10 MeV they can even improve the overall
agreement between the predicted and observed H and He abundances.Comment: 11 pages, 10 figures, references and two appendices added,
conclusions unchanged; accepted for publication in Phys.Rev.
Constraints from and the isotope effect for MgB
With the constraint that K, as observed for MgB, we use the
Eliashberg equations to compute possible allowed values of the isotope
coefficient, . We find that while the observed value can
be obtained in principle, it is difficult to reconcile a recently calculated
spectral function with such a low observed value
Crystallization of a classical two-dimensional electron system: Positional and orientational orders
Crystallization of a classical two-dimensional one-component plasma
(electrons interacting with the Coulomb repulsion in a uniform neutralizing
positive background) is investigated with a molecular dynamics simulation. The
positional and the orientational correlation functions are calculated for the
first time. We have found an indication that the solid phase has a
quasi-long-range (power-law) positional order along with a long-range
orientational order. This indicates that, although the long-range Coulomb
interaction is outside the scope of Mermin's theorem, the absence of ordinary
crystalline order at finite temperatures applies to the electron system as
well. The `hexatic' phase, which is predicted between the liquid and the solid
phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also
discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne
Bounds on the tau and muon neutrino vector and axial vector charge radius
A Majorana neutrino is characterized by just one flavor diagonal
electromagnetic form factor: the anapole moment, that in the static limit
corresponds to the axial vector charge radius . Experimental information
on this quantity is scarce, especially in the case of the tau neutrino. We
present a comprehensive analysis of the available data on the single photon
production process off Z-resonance, and we
discuss the constraints that these measurements can set on for the tau
neutrino. We also derive limits for the Dirac case, when the presence of a
vector charge radius is allowed. Finally, we comment on additional
experimental data on scattering from the NuTeV, E734, CCFR and
CHARM-II collaborations, and estimate the limits implied for and
for the muon neutrino.Comment: 20 pages, 2 eps figures. CCFR data included in the analysis.
Conclusion unchange
Self-energy and Self-force in the Space-time of a Thick Cosmic String
We calculate the self-energy and self-force for an electrically charged
particle at rest in the background of Gott-Hiscock cosmic string space-time. We
found the general expression for the self-energy which is expressed in terms of
the matrix of the scattering problem. The self-energy continuously falls
down outward from the string's center with maximum at the origin of the string.
The self-force is repulsive for an arbitrary position of the particle. It tends
to zero in the string's center and also far from the string and it has a
maximum value at the string's surface. The plots of the numerical calculations
of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
- …