831 research outputs found

    Polarized Dirac fermions in de Sitter spacetime

    Full text link
    The tetrad gauge invariant theory of the free Dirac field in two special moving charts of the de Sitter spacetime is investigated pointing out the operators that commute with the Dirac one. These are the generators of the symmetry transformations corresponding to isometries that give rise to conserved quantities according to the Noether theorem. With their help the plane wave spinor solutions of the Dirac equation with given momentum and helicity are derived and the final form of the quantum Dirac field is established. It is shown that the canonical quantization leads to a correct physical interpretation of the massive or massless fermion quantum fields.Comment: 19 pages, LaTeX w AMS sym

    Self-Trapped Exciton Defects in a Charge Density Wave: Electronic Excitations of BaBiO3

    Full text link
    In the previous paper, it was shown that holes doped into BaBiO3 self-trap as small polarons and bipolarons. These point defects are energetically favorable partly because they undo locally the strain in the charge-density-wave (Peierls insulator) ground state. In this paper the neutral excitations of the same model are discussed. The lowest electronic excitation is predicted to be a self-trapped exciton, consisting of an electron and a hole located on adjacent Bi atoms. This excitation has been seen experimentally (but not identified as such) via the Urbach tail in optical absorption, and the multi-phonon spectrum of the ``breathing mode'' seen in Raman scattering. These two phenomena occur because of the Franck-Condon effect associated with oxygen displacement in the excited state.Comment: 5 pages with 7 embedded figures. See also cond-mat/0108089 on polarons and bipolarons in BaBiO3 contains background informatio

    The past and future of global river ice

    Get PDF
    More than one-third of Earth’s landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic1,2, ecologic3,4, climatic5 and socio-economic6–8 functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world1, the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures9,10, were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-°C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 ± 0.08 days per 1-°C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984–2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080–2100: compared with 2009–2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century

    Topological (Sliced) Doping of a 3D Peierls System: Predicted Structure of Doped BaBiO3

    Full text link
    At hole concentrations below x=0.4, Ba_(1-x)K_xBiO_3 is non-metallic. At x=0, pure BaBiO3 is a Peierls insulator. Very dilute holes create bipolaronic point defects in the Peierls order parameter. Here we find that the Rice-Sneddon version of Peierls theory predicts that more concentrated holes should form stacking faults (two-dimensional topological defects, called slices) in the Peierls order parameter. However, the long-range Coulomb interaction, left out of the Rice-Sneddon model, destabilizes slices in favor of point bipolarons at low concentrations, leaving a window near 30% doping where the sliced state is marginally stable.Comment: 6 pages with 5 embedded postscript figure

    RivWidthCloud: An Automated Google Earth Engine Algorithm for River Width Extraction from Remotely Sensed Imagery

    Get PDF
    The wetted width of a river is one of the most important hydraulic parameters that can be readily measured using remote sensing. Remotely sensed river widths are used to estimate key attributes of river systems, including changes in their surface area, channel storage, and discharge. Although several published algorithms automate river network and width extraction from remote sensing images, they are limited by only being able to run on local computers and do not automatically manage cloudy images as input. Here we present RivWidthCloud, a river width software package developed on the Google Earth Engine cloud computing platform. RivWidthCloud automatically extracts river centerline and widths from optical satellite images with the ability to flag observations that are obstructed by features like clouds, cloud shadows, and snow based on existing quality band classification. Because RivWidthCloud is built on a popular cloud computing platform, it allows users to easily apply the algorithm to the platform's vast archive of remote sensing images, thereby reducing the users' overhead for computing hardware and data storage. By comparing RivWidthCloud-derived widths from Landsat images to in situ widths from the U.S. and Canada, we show that RivWidthCloud can estimate widths with high accuracy (root mean square error: 99 m; mean absolute error: 43 m; mean bias:-21 m). By making RivWidthCloud publicly available, we anticipate that it will be used to address both river science questions and operational applications of water resource management

    Lithologic and tectonic controls on bedrock channel form at the northwest Himalayan front

    Get PDF
    Recognition that channel form reflects a river's ability to erode rock and transport material has spawned stream-power models that estimate incision patterns by approximating energy dissipation within a channel. These models frequently assume that channel width scales as a power law with drainage area, partly because drainage area is easily extracted from digital elevation models (DEMs). However, this assumption is often confounded by local variations in rock strength and rock-uplift rate that can cause channel constriction downstream. Here we investigate the morphological response to spatial changes in rock strength and rock-uplift rate of 10 bedrock channels traversing the Mohand range along the northwest Himalayan front. We present a new method to continuously measure and compare channel width, slope, and other hydraulic parameters that integrate satellite imagery and DEM analysis. Our method corrects for an ∼13% overestimation of average channel gradient from a 90m resolution DEM that arises from short circuits of fine-scale meanders. We find that channels (1) narrow >1 km upstream from knickpoints formed by an increase in rock strength, (2) adjust laterally more than vertically in response to downstream decreases rock erodibility and uplift rate, and (3) meander where shear stresses are high and channel widths are low. We attribute these results to a high ratio of sediment supply to transport capacity, which enhances lateral erosion relative to vertical incision. Our results suggest that substrate strength and sediment supply substantially infl uence channel form and that channel width should be explicitly measured when interpreting tectonic signals from bedrock channel morphology

    Temporally Variable Stream Width and Surface Area Distributions in a Headwater Catchment

    Get PDF
    Headwater stream networks expand and contract in response to event-driven and seasonal catchment wetness conditions. This dynamic behavior drives variability in the width, length, and surface area of streams, important parameters for constraining a range of ecological and biogeochemical processes, such as atmospheric gas exchange. While the longitudinal expansion and contraction of streams has been studied for some time, variability in stream widths remains poorly understood. Recent studies have found that stream widths at average baseflow conditions follow a log-normal frequency distribution across diverse physiographies. To examine how the distribution of widths varies with flow conditions, we surveyed stream widths 12 times across a 48.4-ha research watershed, located in the Duke Forest in central North Carolina, USA. Here, we show that as runoff increased from the 37th to 99th percentiles of flow, flowing streams widened across the network (“lateral expansion”) and streamflow simultaneously extended upstream to reactivate dry channels (“longitudinal expansion”). In general, as runoff increased, the marginal increase in stream surface area was equally divided between longitudinal and lateral expansion. Even so, the median stream width widens on average with increasing runoff, suggesting that longitudinal and lateral expansion affect the distribution of stream width differently. We find that the form of the relationship between stream width and runoff is a power law, which can be used to refine models for surface area estimation

    Maternal and child reflective functioning in the context of child sexual abuse: pathways to depression and externalising difficulties

    Get PDF
    BACKGROUND: Sexual abuse is a well-recognised risk factor for child psychopathology. Little is known regarding whether child and maternal mentalization can be considered a potential resource or protective factor in this context, respectively, mediating or moderating the relationship between sexual abuse and psychopathology. OBJECTIVE: The aims of this study were (1) to explore the relationships between child and maternal mentalizing, measured as reflective functioning (RF), and child depressive symptoms and externalising difficulties; and (2) to examine whether child mentalizing mediates the relationship between child sexual abuse (CSA) and psychopathology. METHOD: A total of 168 children aged 7-12 years and their mothers participated in the study. The sample included 74 dyads where children had experienced sexual abuse. The Child Attachment Interview was rated by using the Child Reflective Functioning Scale to assess children's mentalization, and the Child Depression Inventory was used to assess depressive symptoms. Mothers completed the Parent Development Interview to assess maternal RF and the Child Behavior Checklist to assess their child's externalising difficulties. A model involving direct and indirect paths from CSA, child and maternal RF to child psychopathology was examined using Mplus software. RESULTS: Child mentalization partially mediated the relationships between CSA and depressive symptoms, as well as the relationship between CSA and externalising difficulties. Maternal mentalization was an independent predictor of child externalising difficulties, with higher maternal RF associated with less externalising difficulties. DISCUSSION: The findings indicate that by ages 7-12, child mentalization is an important inner resource associated with lower depression and externalising. In addition, this study provides new evidence of the importance of the parent's mentalizing stance for the development of self-regulation and externalising difficulties in both abused and non-abused children. The clinical implications are discussed

    MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset

    Get PDF
    High-resolution raster hydrography maps are a fundamental data source for many geoscience applications. Here we introduce MERIT Hydro, a new global flow direction map at 3-arc sec resolution (~90 m at the equator) derived from the latest elevation data (MERIT DEM) and water body data sets (G1WBM, Global Surface Water Occurrence, and OpenStreetMap). We developed a new algorithm to extract river networks near automatically by separating actual inland basins from dummy depressions caused by the errors in input elevation data. After a minimum amount of hand editing, the constructed hydrography map shows good agreement with existing quality-controlled river network data sets in terms of flow accumulation area and river basin shape. The location of river streamlines was realistically aligned with existing satellite-based global river channel data. Relative error in the drainage area was <0.05 for 90% of Global Runoff Data Center (GRDC) gauges, confirming the accuracy of the delineated global river networks. Discrepancies in flow accumulation area were found mostly in arid river basins containing depressions that are occasionally connected at high water levels and thus resulting in uncertain watershed boundaries. MERIT Hydro improves on existing global hydrography data sets in terms of spatial coverage (between N90 and S60) and representation of small streams, mainly due to increased availability of high-quality baseline geospatial data sets. The new flow direction and flow accumulation maps, along with accompanying supplementary layers on hydrologically adjusted elevation and channel width, will advance geoscience studies related to river hydrology at both global and local scales

    The graviton one-loop effective action in cosmological space-times with constant deceleration

    Full text link
    We consider the quantum Friedmann equations which include one-loop vacuum fluctuations due to gravitons and scalar field matter in a FLRW background with constant ϵ=H˙/H2\epsilon=-{\dot{H}}/{H^2}. After several field redefinitions, to remove the mixing between the gravitational and matter degrees of freedom, we can construct the one loop correction to the Friedmann equations. Due to cosmological particle creation, the propagators needed in such a calculation are typically infrared divergent. In this paper we construct the graviton and matter propagators, making use of the recent construction of the infrared finite scalar propagators calculated on a compact spatial manifold in \cite{Janssen:2008px}. The resulting correction to the Friedman equations is suppressed with respect to the tree level contribution by a factor of H2/mp2H^2/m_p^2 and shows no secular growth.Comment: 37 pages, 1 figure. Revised version, including a proper treatment of the infrared secto
    corecore