1,598 research outputs found

    Revisiting soliton contributions to perturbative amplitudes

    Get PDF
    Open Access funded by SCOAP3. CP is a Royal Society Research Fellow and partly supported by the U.S. Department of Energy under grants DOE-SC0010008, DOE-ARRA-SC0003883 and DOE-DE-SC0007897. ABR is supported by the Mitchell Family Foundation. We would like to thank the Mitchell Institute at Texas A&M and the NHETC at Rutgers University respectively for hospitality during the course of this work. We would also like to acknowledge the Aspen Center for Physics and NSF grant 1066293 for a stimulating research environment

    Pulmonary contusion in a collegiate diver: a case report

    Get PDF
    Abstract Introduction Pulmonary contusions typically occur after high-energy trauma and have rarely been reported as occurring during participation in sports. This is the first reported case of a pulmonary contusion occurring in a sport other than football. Case Presentation A 19-year-old Caucasian man impacted the water awkwardly after diving off a one-meter springboard. He complained of chest discomfort and produced immediate hemoptysis. Computed tomography confirmed the diagnosis of pulmonary contusion. The athlete recovered without complications and returned to activity one week after injury. Conclusion Immediate hemoptysis following blunt chest trauma during sports activity may indicate an underlying pulmonary contusion. No specific guidelines exist for return to athletic competition following pulmonary contusion, but a progressive return to activities once symptoms resolve appears to be a reasonable approach.</p

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    An extension to a statistical approach for family based association studies provides insights into genetic risk factors for multiple sclerosis in the HLA-DRB1 gene

    Get PDF
    Background: Multiple sclerosis (MS) is a complex trait in which genes in the MHC class II region exert the single strongest effect on genetic susceptibility. The principal MHC class II haplotype that increases MS risk in individuals of Northern European descent are those that bear HLA-DRB1*15. However, several other HLA-DRB1 alleles have been positively and negatively associated with MS and each of the main allelotypes is composed of many sub-allelotypes with slightly different sequence composition. Given the role of this locus in antigen presentation it has been suggested that variations in the peptide binding site of the allele may underlie allelic variation in disease risk. Methods: In an investigation of 7,333 individuals from 1,352 MS families, we assessed the nucleotide sequence of HLA-DRB1 for any effects on disease susceptibility extending a recently published method of statistical analysis for family-based association studies to the particular challenges of hyper-variable genetic regions. Results: We found that amino acid 60 of the HLA-DRB1 peptide sequence, which had previously been postulated based on structural features, is unlikely to play a major role. Instead, empirical evidence based on sequence information suggests that MS susceptibility arises primarily from amino acid 13. Conclusion: Identifying a single amino acid as a major risk factor provides major practical implications for risk and for the exploration of mechanisms, although the mechanism of amino acid 13 in the HLA-DRB1 sequence's involvement in MS as well as the identity of additional variants on MHC haplotypes that influence risk need to be uncovered
    corecore