491 research outputs found

    Weather for Industrial Nuclear Explosions.

    Get PDF

    Timing and patterns of debris flow deposition on Shepherd and Symmes Creek fans, Owens Valley, California, deduced from cosmogenic 10Be

    Get PDF
    Debris-flow fans on the western side of Owens Valley, California, show differences in their depths of fan head incision, and thus preserve significantly different surface records of sedimentation over glacial-interglacial cycles. We mapped fan lobes on two fans (Symmes and Shepherd Creek) based on the geometry of the deposits using field observations and high-resolution Airborne Laser Swath Mapping (ALSM) data, and established an absolute fan lobe chronology by using cosmogenic radionuclide exposure dating of large debris-flow boulders. While both fans and their associated catchments were subject to similar tectonic and base level conditions, the Shepherd Creek catchment was significantly glaciated while that of Symmes Creek experienced only minor glaciation. Differences in the depth of fan head incision have led to cosmogenic surface age chronologies that differ in the length of the preserved depositional records. Symmes Creek fan preserves evidence of exclusively Holocene deposition with cosmogenic 10Be ages ranging from 8 to 3 ka. In contrast, the Shepherd Creek fan surface was formed by late Pleistocene and Holocene debris-flow activity, with major deposition between 86-74, 33-15, and 11-3 ka. These age constraints on the depositional timing in Owens Valley show that debris-flow deposition in Owens Valley occurred during both glacial and interglacial periods, but may have been enhanced during marine isotope stages 4 and 2. The striking differences in the surface record of debris-flow deposition on adjacent fans have implications for the use of fan surfaces as paleoenvironmental recorders, and for the preservation of debris-flow deposits in the stratigraphic record

    Legume Silage as a Poultry Feed

    Get PDF

    Resistivity of a Metal between the Boltzmann Transport Regime and the Anderson Transition

    Full text link
    We study the transport properties of a finite three dimensional disordered conductor, for both weak and strong scattering on impurities, employing the real-space Green function technique and related Landauer-type formula. The dirty metal is described by a nearest neighbor tight-binding Hamiltonian with a single s-orbital per site and random on-site potential (Anderson model). We compute exactly the zero-temperature conductance of a finite size sample placed between two semi-infinite disorder-free leads. The resistivity is found from the coefficient of linear scaling of the disorder averaged resistance with sample length. This ``quantum'' resistivity is compared to the semiclassical Boltzmann expression computed in both Born approximation and multiple scattering approximation.Comment: 5 pages, 3 embedded EPS figure

    Sharing a different voice: Attending to stories in collaborative writing

    Get PDF
    Through three stories, we hope to reveal how sometimes contradictory or unrecognizable aspects of our lives, selves, and stories can create tensions in the collaborative writing endeavor. We begin with a story that illuminates some of the narrative tensions that surface during a decade of writing collaboratively. In an effort to navigate these tensions, we explore two further stories in dialogue as a way to reveal how dominant narratives shape our lives and the stories we might tell. One aim of sharing these stories is to reveal how problematic ways of being are often inseparable from one’s cultural legacy. Making previously obscured narratives visible paves the way for imaginary leaps that are necessary for change. We hope these insights are useful for other writers and collaborators and those who seek caring, responsive, and nurturing writing relationships yet realize this journey can be problematic

    Bcc 4^4He as a Coherent Quantum Solid

    Full text link
    In this work we investigate implications of the quantum nature of bcc 4^{4}% He. We show that it is a unique solid phase with both a lattice structure and an Off-Diagonal Long Range Order of coherently oscillating local electric dipole moments. These dipoles arise from the local motion of the atoms in the crystal potential well, and oscillate in synchrony to reduce the dipolar interaction energy. The dipolar ground-state is therefore found to be a coherent state with a well defined global phase and a three-component complex order parameter. The condensation energy of the dipoles in the bcc phase stabilizes it over the hcp phase at finite temperatures. We further show that there can be fermionic excitations of this ground-state and predict that they form an optical-like branch in the (110) direction. A comparison with 'super-solid' models is also discussed.Comment: 12 pages, 8 figure

    Quasiparticle vanishing driven by geometrical frustration

    Full text link
    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120 magnetic Neel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low energy quasiparticle excitations vanish outside the neighbourhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)^2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio

    Spin-triplet superconducting pairing due to local (Hund's rule, Dirac) exchange

    Full text link
    We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hund's rule coupling. The quasiparticle energy and their wave function are determined for the three principal phases with the gap, which is momentum independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the case of triplet pairing in the two-band case leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle interchange. A comparison with the local interband spin-singlet pairing is also made.Comment: 16 pages, LaTex, submitted to Phys. Rev.

    SU(N) Evolution of a Frustrated Spin Ladder

    Full text link
    Recent studies indicate that the weakly coupled spin-1/2 Heisenberg antiferromagnet with next nearest neighbor frustration supports massive spinons when suitably tuned. The straightforward SU(N) generalization of the low energy ladder Hamiltonian yields two independent SU(N) Thirring models with N-1 multiplets of massive ``spinon'' excitations. We study the evolution of the complete set of low-energy dynamical structure factors using form factors. Those corresponding to the smooth (staggered) magnetizations are qualitatively different (the same) in the N=2 and N>2 cases. The absence of single-particle peaks preserves the notion of spinons stabilized by frustration. In contrast to the ladder, we note that the N=infinity limit of the four chain magnet is not a trivial free theory.Comment: 10 pages, RevTex, 5 figures; SU(N) approach clarifie

    Optical sum rule violation, superfluid weight and condensation energy in the cuprates

    Full text link
    The model of hole superconductivity predicts that the superfluid weight in the zero-frequency δ\delta-function in the optical conductivity has an anomalous contribution from high frequencies, due to lowering of the system's kinetic energy upon entering the superconducting state. The lowering of kinetic energy, mainly in-plane in origin, accounts for both the condensation energy of the superconductor as well as an increased potential energy due to larger Coulomb repulsion in the paired state. It leads to an apparent violation of the conductivity sum rule, which in the clean limit we predict to be substantially larger for in-plane than for c-axis conductivity. However, because cuprates are in the dirty limit for c-axis transport, the sum rule violation is found to be greatly enhanced in the c-direction. The model predicts the sum rule violation to be largest in the underdoped regime and to decrease with doping, more rapidly in the c-direction that in the plane. So far, experiments have detected sum rule violation in c-axis transport in several cuprates, as well as a decrease and disappearance of this violation for increasing doping, but no violation in-plane. We explore the predictions of the model for a wide range of parameters, both in the absence and in the presence of disorder, and the relation with current experimental knowledge.Comment: submitted to Phys.Rev.
    • …
    corecore