271 research outputs found

    Testing of a Water Loss Distribution Model for Moving Sprinkler Systems

    Get PDF
    Field water balance measurements using monolithic lysimeters were used in validating the Cupid-DPE model for predicting water loss partitioning during sprinkler irrigation from a moving lateral system fitted with impact sprinklers and spray nozzles. The model combines equations governing water droplet evaporation and droplet ballistics with a comprehensive plant-environment energy balance model. Comparisons indicate good agreement between measured and modeled transpiration, and the measured and modeled soil evaporation during the day of irrigation. Total predicted evapotranspiration during the day of irrigation was greater than measured totals using the monolithic lysimeters. However, part of this difference was because the lysimeters could not measure water use during irrigation. Total measured and predicted evapo-transpiration agreed well for the day following irrigation. Predicted soil evaporation rates matched well for the period immediately following irrigation, and cumulative soil evaporation was nearly identical to the measured total through the end of the next day. During irrigation, the main water loss was shifted from transpiration to evaporation of the wetted-canopy. For equal application volumes, the duration of this effect was greater using impact sprinklers due to the greater wetted diameter and lower average application rate compared to spray nozzles. Predicted water flux rates during irrigation were up to 50% greater for canopy evaporation than for transpiration rates predicted immediately prior to the start of irrigation. Canopy evaporation amounted to 69% and 63% of the total predicted water use during impact and spray irrigation, respectively. It also was 0.69 and 0.28 mm greater, respectively, than the predicted transpiration total during this same time span assuming no irrigation had been applied. About 13 and 5% of the water applied by overhead sprinkling was evaporated or transpired during impact and spray irrigation, respectively. However, the net increase in predicted water loss during irrigation was only 5.8% and 2.4% of the irrigated water depth applied for the impact and spray cases, respectively, because transpiration and soil evaporation would have occurred even without irrigation. Although droplet evaporation represented less than 1% of the total water loss for the day using either type of sprinkler, irrigation water did influence the energy transfer between the plant-environment and water droplets during flight, on the canopy, and the soil

    On Bayesian Modelling of the Uncertainties in Palaeoclimate Reconstruction

    Full text link
    We outline a model and algorithm to perform inference on the palaeoclimate and palaeoclimate volatility from pollen proxy data. We use a novel multivariate non-linear non-Gaussian state space model consisting of an observation equation linking climate to proxy data and an evolution equation driving climate change over time. The link from climate to proxy data is defined by a pre-calibrated forward model, as developed in Salter-Townshend and Haslett (2012) and Sweeney (2012). Climatic change is represented by a temporally-uncertain Normal-Inverse Gaussian Levy process, being able to capture large jumps in multivariate climate whilst remaining temporally consistent. The pre-calibrated nature of the forward model allows us to cut feedback between the observation and evolution equations and thus integrate out the state variable entirely whilst making minimal simplifying assumptions. A key part of this approach is the creation of mixtures of marginal data posteriors representing the information obtained about climate from each individual time point. Our approach allows for an extremely efficient MCMC algorithm, which we demonstrate with a pollen core from Sluggan Bog, County Antrim, Northern Ireland.Comment: 25 pages, 7 figure

    The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73–15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL), 40Ar∕39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867

    Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3

    Full text link
    Bi2Se3 is a topological insulator with metallic surface states residing in a large bulk bandgap. It is believed that Bi2Se3 gets additional n-type doping after exposure to atmosphere, thereby reducing the relative contribution of surface states in total conductivity. In this letter, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological surface states. Appropriate surface passivation or encapsulation may be required to probe topological surface states of Bi2Se3 by transport measurements

    Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I

    Get PDF
    Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Depicting the tree of life in museums: guiding principles from psychological research

    Get PDF
    The Tree of Life is revolutionizing our understanding of life on Earth, and, accordingly, evolutionary trees are increasingly important parts of exhibits on biodiversity and evolution. The authors argue that in using these trees to effectively communicate evolutionary principles, museums need to take into account research results from cognitive, developmental, and educational psychology while maintaining a focus on visitor engagement and enjoyment. Six guiding principles for depicting evolutionary trees in museum exhibits distilled from this research literature were used to evaluate five current or recent museum trees. One of the trees was then redesigned in light of the research while preserving the exhibit’s original learning goals. By attending both to traditional factors that influence museum exhibit design and to psychological research on how people understand diagrams in general and Tree of Life graphics in particular, museums can play a key role in fostering 21st century scientific literacy

    CATMoS: Collaborative Acute Toxicity Modeling Suite.

    Get PDF
    BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≀50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495

    “Whoa! we’re going deep in the trees!”: patterns of collaboration around an interactive information visualization exhibit

    Get PDF
    In this paper we present a qualitative analysis of natural history museum visitor interaction around a multi-touch tabletop exhibit called DeepTree that we designed around concepts of evolution and common descent. DeepTree combines several large scientific datasets and an innovative visualization technique to display a phylogenetic tree of life consisting of over 70,000 species. After describing our design, we present a study involving pairs of children interacting with DeepTree in two natural history museums. Our analysis focuses on two questions. First, how do dyads negotiate their moment-to-moment exploration of the exhibit? Second, how do dyads develop and negotiate their understanding of evolutionary concepts? In order to address these questions we present an analytical framework that describes dyads’ exploration along two dimensions: coordination and target of action. This framework reveals four distinct patterns of interaction, which, we argue, are relevant for similar interactive designs. We conclude with a discussion of the role of design in helping visitors make sense of interactive experiences involving the visualization of large scientific datasets
    • 

    corecore