53,776 research outputs found
Saturation-Dependence of Dispersion in Porous Media
In this study, we develop a saturation-dependent treatment of dispersion in
porous media using concepts from critical path analysis, cluster statistics of
percolation, and fractal scaling of percolation clusters. We calculate spatial
solute distributions as a function of time and calculate arrival time
distributions as a function of system size. Our previous results correctly
predict the range of observed dispersivity values over ten orders of magnitude
in experimental length scale, but that theory contains no explicit dependence
on porosity or relative saturation. This omission complicates comparisons with
experimental results for dispersion, which are often conducted at saturation
less than 1. We now make specific comparisons of our predictions for the
arrival time distribution with experiments on a single column over a range of
saturations. This comparison suggests that the most important predictor of such
distributions as a function of saturation is not the value of the saturation
per se, but the applicability of either random or invasion percolation models,
depending on experimental conditions
Analytic Results for the Gravitational Radiation from a Class of Cosmic String Loops
Cosmic string loops are defined by a pair of periodic functions and
, which trace out unit-length closed curves in three-dimensional
space. We consider a particular class of loops, for which lies along
a line and lies in the plane orthogonal to that line. For this class
of cosmic string loops one may give a simple analytic expression for the power
radiated in gravitational waves. We evaluate exactly in
closed form for several special cases: (1) a circle traversed
times; (2) a regular polygon with sides and interior vertex angle
; (3) an isosceles triangle with semi-angle .
We prove that case (1) with is the absolute minimum of within
our special class of loops, and identify all the stationary points of
in this class.Comment: 15 pages, RevTex 3.0, 7 figures available via anonymous ftp from
directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-1
Pion mass effects on axion emission from neutron stars through NN bremsstrahlung processes
The rates of axion emission by nucleon-nucleon bremsstrahlung are calculated
with the inclusion of the full momentum contribution from a nuclear one pion
exchange (OPE) potential. The contributions of the neutron-neutron (nn),
proton-proton (pp) and neutron-proton (np) processes in both the nondegenerate
and degenerate limits are explicitly given. We find that the finite momentum
corrections to the emissivities are quantitatively significant for the
non-degenerate regime and temperature-dependent, and should affect the existing
axion mass bounds. The trend of these nuclear effects is to diminish the
emissivities
A Planning Pipeline for Large Multi-Agent Missions
In complex multi-agent applications, human operators are often tasked with planning and managing large heterogeneous teams of humans and autonomous vehicles. Although the use of these autonomous vehicles broadens the scope of meaningful applications, many of their systems remain unintuitive and difficult to master for human operators whose expertise lies in the application domain and not at the platform level. Current research focuses on the development of individual capabilities necessary to plan multi-agent missions of this scope, placing little emphasis on the integration of these components in to a full pipeline. The work presented in this paper presents a complete and user-agnostic planning pipeline for large multiagent missions known as the HOLII GRAILLE. The system takes a holistic approach to mission planning by integrating capabilities in human machine interaction, flight path generation, and validation and verification. Components modules of the pipeline are explored on an individual level, as well as their integration into a whole system. Lastly, implications for future mission planning are discussed
Small-q electron-phonon scattering and linear dc resistivity in high-T_c oxides
We examine the effect on the DC resistivity of small-q electron-phonon
scattering, in a system with the electronic topology of the high-T_c oxides.
Despite the fact that the scattering is dominantly forward, its contribution to
the transport can be significant due to ``ondulations'' of the bands in the
flat region and to the umpklapp process. When the extended van-Hove
singularities are sufficiently close to the acoustic branch of the
phonons contribute significantly to the transport. In that case one can obtain
linear dependent resistivity down to temperatures as low as 10 K, even if
electrons are scattered also by optical phonons of about 500 K as reported by
Raman measurements.Comment: LATEX file and 4 Postscript figure
Stretching Wiggly Strings
How does the amplitude of a wiggle on a string change when the string is
stretched? We answer this question for both longitudinal and transverse wiggles
and for arbitrary equation of state, {\it i.e.}, for arbitrary relation between
the tension and the energy per unit length of the string.
This completes our derivation of the renormalization of string parameters which
results from averaging out small scale wiggles on a string. The program is
presented here in its entirety.Comment: Written with ReVTeX 3.0 package. Two figures are not included.
Complete paper with postscript figures can be retrieved through anonymous ftp
@quark.phys.ufl.edu. Get /preprints/ifthep94_4.tar.gz, gunzip and tar it.
UFIFT-HEP-94-
On the complete analytic structure of the massive gravitino propagator in four-dimensional de Sitter space
With the help of the general theory of the Heun equation, this paper
completes previous work by the authors and other groups on the explicit
representation of the massive gravitino propagator in four-dimensional de
Sitter space. As a result of our original contribution, all weight functions
which multiply the geometric invariants in the gravitino propagator are
expressed through Heun functions, and the resulting plots are displayed and
discussed after resorting to a suitable truncation in the series expansion of
the Heun function. It turns out that there exist two ranges of values of the
independent variable in which the weight functions can be divided into
dominating and sub-dominating family.Comment: 21 pages, 9 figures. The presentation has been further improve
Origin of Superconductivity in Boron-doped Diamond
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is
investigated exploiting its electronic and vibrational analogies to MgB2. The
deformation potential of the hole states arising from the C-C bond stretch mode
is 60% larger than the corresponding quantity in MgB2 that drives its high Tc,
leading to very large electron-phonon matrix elements. The calculated coupling
strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon
coupling the likely mechanism. Higher doping should increase T_c somewhat, but
effects of three dimensionality primarily on the density of states keep doped
diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in
Physical Review Letters(2004)
Phonon spectral function for an interacting electron-phonon system
Using exact diagonalzation techniques, we study a model of interacting
electrons and phonons. The spectral width of the phonons is found to be reduced
as the Coulomb interaction U is increased. For a system with two modes per
site, we find a transfer of coupling strength from the upper to the lower mode.
This transfer is reduced as U is increased. These results give a qualitative
explanation of differences between Raman and photoemission estimates of the
electron-phonon coupling constants for A3C60 (A= K, Rb).Comment: 4 pages, RevTeX, 2 eps figur
- …