1,142 research outputs found

    Trauma histories of men and women in residential drug treatment: The Scottish evidence

    Get PDF
    This article focuses on self-reported child neglect and abuse in residential drug treatment drawing on data from clients in Scotland collected 1996-1999. It notes the lack of adoption of regular screening using validated tools of childhood trauma in men and women. The authors’ findings suggest that the prevalence of childhood abuse histories are higher in female drug users than male drug users but recognises that even with standardised tools there is a wealth of diverse categories of severity of abuse that warn against broad treatment plans for ‘the traumatised’

    Searching for Gravitational Waves from Binary Inspirals with LIGO

    Get PDF
    We describe the current status of the search for gravitational waves from inspiralling compact binary systems in LIGO data. We review the result from the first scientific run of LIGO (S1). We present the goals of the search of data taken in the second scientific run (S2) and describe the differences between the methods used in S1 and S2.Comment: 9 pages, 2 figures. Published in proceedings of the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, WI, USA, 17-20 December 200

    Radiative Falloff in Neutron Star Spacetimes

    Get PDF
    We systematically study late-time tails of scalar waves propagating in neutron star spacetimes. We consider uniform density neutron stars, for which the background spacetime is analytic and the compaction of the star can be varied continously between the Newtonian limit 2M/R << 1 and the relativistic Buchdahl limit 2M/R = 8/9. We study the reflection of a finite wave packet off neutron stars of different compactions 2M/R and find that a Newtonian, an intermediate, and a highly relativistic regime can be clearly distinguished. In the highly relativistic regime, the reflected signal is dominated by quasi-periodic peaks, which originate from the wave packet bouncing back and forth between the center of the star and the maximum of the background curvature potential at R ~ 3 M. Between these peaks, the field decays according to a power-law. In the Buchdahl limit 2M/R -> 8/9 the light travel time between the center and the maximum or the curvature potential grows without bound, so that the first peak arrives only at infinitely late time. The modes of neutron stars can therefore no longer be excited in the ultra-relativistic limit, and it is in this sense that the late-time radiative decay from neutron stars looses all its features and gives rise to power-law tails reminiscent of Schwarzschild black holes.Comment: 10 pages, 7 figures, to appear in PR

    Does mass drug administration for the integrated treatment of neglected tropical diseases really work? Assessing evidence for the control of schistosomiasis and soil-transmitted helminths in Uganda

    Get PDF
    This paper was one of four papers commissioned to review the role of social sciences in NTD control by TDR, the Special Programme for Research and Training on Tropical Diseases, which is executed by WHO and co-sponsored by UNICEF, UNDP, the World Bank and WHO.This article has been made available through the Brunel Open Access Publishing Fund.Background: Less is known about mass drug administration [MDA] for neglected tropical diseases [NTDs] than is suggested by those so vigorously promoting expansion of the approach. This paper fills an important gap: it draws upon local level research to examine the roll out of treatment for two NTDs, schistosomiasis and soil-transmitted helminths, in Uganda. Methods: Ethnographic research was undertaken over a period of four years between 2005-2009 in north-west and south-east Uganda. In addition to participant observation, survey data recording self-reported take-up of drugs for schistosomiasis, soil-transmitted helminths and, where relevant, lymphatic filariasis and onchocerciasis was collected from a random sample of at least 10% of households at study locations. Data recording the take-up of drugs in Ministry of Health registers for NTDs were analysed in the light of these ethnographic and social survey data. Results: The comparative analysis of the take-up of drugs among adults revealed that although most long term residents have been offered treatment at least once since 2004, the actual take up of drugs for schistosomiasis and soil-transmitted helminths varies considerably from one district to another and often also within districts. The specific reasons why MDA succeeds in some locations and falters in others relates to local dynamics. Issues such as population movement across borders, changing food supply, relations between drug distributors and targeted groups, rumours and conspiracy theories about the 'real' purpose of treatment, subjective experiences of side effects from treatment, alternative understandings of affliction, responses to social control measures and historical experiences of public health control measures, can all make a huge difference. The paper highlights the need to adapt MDA to local circumstances. It also points to specific generalisable issues, notably with respect to health education, drug distribution and more effective use of existing public health legislation. Conclusion: While it has been an achievement to have offered free drugs to so many adults, current standard practices of monitoring, evaluation and delivery of MDA for NTDs are inconsistent and inadequate. Efforts to integrate programmes have exacerbated the difficulties. Improved assessment of what is really happening on the ground will be an essential step in achieving long-term overall reduction of the NTD burden for impoverished communities.This article is available through the Brunel Open Access Publishing Fund

    A coherent triggered search for single spin compact binary coalescences in gravitational wave data

    Get PDF
    In this paper we present a method for conducting a coherent search for single spin compact binary coalescences in gravitational wave data and compare this search to the existing coincidence method for single spin searches. We propose a method to characterize the regions of the parameter space where the single spin search, both coincident and coherent, will increase detection efficiency over the existing non-precessing search. We also show example results of the coherent search on a stretch of data from LIGO's fourth science run but note that a set of signal based vetoes will be needed before this search can be run to try to make detections.Comment: 14 pages, 4 figure

    Method to estimate ISCO and ring-down frequencies in binary systems and consequences for gravitational wave data analysis

    Get PDF
    Recent advances in the description of compact binary systems have produced gravitational waveforms that include inspiral, merger and ring-down phases. Comparing results from numerical simulations with those of post-Newtonian (PN), and related, expansions has provided motivation for employing PN waveforms in near merger epochs when searching for gravitational waves and has encouraged the development of analytic fits to full numerical waveforms. The models and simulations do not yet cover the full binary coalescence parameter space. For these yet un-simulated regions, data analysts can still conduct separate inspiral, merger and ring-down searches. Improved knowledge about the end of the inspiral phase, the beginning of the merger, and the ring-down frequencies could increase the efficiency of both coherent inspiral-merger-ring-down (IMR) searches and searches over each phase separately. Insight can be gained for all three cases through a recently presented theoretical calculation, which, corroborated by the numerical results, provides an implicit formula for the final spin of the merged black holes, accurate to within 10% over a large parameter space. Knowledge of the final spin allows one to predict the end of the inspiral phase and the quasinormal mode ring-down frequencies, and in turn provides information about the bandwidth and duration of the merger. In this work we will discuss a few of the implications of this calculation for data analysis.Comment: Added references to section 3 14 pages 5 figures. Submitted to Classical and Quantum Gravit

    Searching for periodic sources with LIGO

    Get PDF
    We investigate the computational requirements for all-sky, all-frequency searches for gravitational waves from spinning neutron stars, using archived data from interferometric gravitational wave detectors such as LIGO. These sources are expected to be weak, so the optimal strategy involves coherent accumulaton of signal-to-noise using Fourier transforms of long stretches of data (months to years). Earth-motion-induced Doppler shifts, and intrinsic pulsar spindown, will reduce the narrow-band signal-to-noise by spreading power across many frequency bins; therefore, it is necessary to correct for these effects before performing the Fourier transform. The corrections can be implemented by a parametrized model, in which one does a search over a discrete set of parameter values. We define a metric on this parameter space, which can be used to determine the optimal spacing between points in a search; the metric is used to compute the number of independent parameter-space points Np that must be searched, as a function of observation time T. The number Np(T) depends on the maximum gravitational wave frequency and the minimum spindown age tau=f/(df/dt) that the search can detect. The signal-to-noise ratio required, in order to have 99% confidence of a detection, also depends on Np(T). We find that for an all-sky, all-frequency search lasting T=10^7 s, this detection threshhold is at a level of 4 to 5 times h(3/yr), where h(3/yr) is the corresponding 99% confidence threshhold if one knows in advance the pulsar position and spin period.Comment: 18 pages, LaTeX, 12 PostScript figures included using psfig. Submitted to Phys. Rev.

    Radiative falloff of a scalar field in a weakly curved spacetime without symmetries

    Full text link
    We consider a massless scalar field propagating in a weakly curved spacetime whose metric is a solution to the linearized Einstein field equations. The spacetime is assumed to be stationary and asymptotically flat, but no other symmetries are imposed -- the spacetime can rotate and deviate strongly from spherical symmetry. We prove that the late-time behavior of the scalar field is identical to what it would be in a spherically-symmetric spacetime: it decays in time according to an inverse power-law, with a power determined by the angular profile of the initial wave packet (Price falloff theorem). The field's late-time dynamics is insensitive to the nonspherical aspects of the metric, and it is governed entirely by the spacetime's total gravitational mass; other multipole moments, and in particular the spacetime's total angular momentum, do not enter in the description of the field's late-time behavior. This extended formulation of Price's falloff theorem appears to be at odds with previous studies of radiative decay in the spacetime of a Kerr black hole. We show, however, that the contradiction is only apparent, and that it is largely an artifact of the Boyer-Lindquist coordinates adopted in these studies.Comment: 17 pages, RevTeX

    Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data

    Get PDF
    The LIGO detectors are sensitive to a variety of noise transients of non-astrophysical origin. Instrumental glitches and environmental disturbances increase the false alarm rate in the searches for gravitational waves. Using times already identified when the interferometers produced data of questionable quality, or when the channels that monitor the interferometer indicated non-stationarity, we have developed techniques to safely and effectively veto false triggers from the compact binary coalescences (CBCs) search pipeline
    corecore