536 research outputs found

    Induced Magnetic Ordering by Proton Irradiation in Graphite

    Full text link
    We provide evidence that proton irradiation of energy 2.25 MeV on highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism. Measurements performed with a superconducting quantum interferometer device (SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering is stable at room temperature.Comment: 3 Figure

    Gate-induced band ferromagnetism in an organic polymer

    Full text link
    We propose that a chain of five-membered rings (polyaminotriazole) should be ferromagnetic with an appropriate doping that is envisaged to be feasible with an FET structure. The ferromagnetism is confirmed by a spin density functional calculation, which also shows that ferromagnetism survives the Peierls instability. We explain the magnetism in terms of Mielke and Tasaki's flat-band ferromagnetism with the Hubbard model. This opens a new possibility of band ferromagnetism in purely organic polymers.Comment: 4 pages, 7 figure

    Recents trends in breast cancer incidence by age in France (2000-2006)

    Get PDF

    Biological status and dietary intakes ofiIron, zinc and vitamin A among women and preschool children in rural Burkina Faso

    Get PDF
    Background Food-based approaches such as biofortification are meant to sustainably address micronutrient deficiencies in poor settings. Knowing more about micronutrient intakes and deficiencies is a prerequisite to designing and evaluating interventions. Objective The objectives of the study were to assess biological status and dietary intakes of iron, zinc and vitamin A among women and children aged 36-59 months in rural Burkina Faso and to study relationships between intake and status to better inform future food-based interventions. Design A cross-sectional survey was carried out in two rural provinces of Burkina Faso on a random cluster sample of 480 mother-child pairs. Dietary data was obtained by 24-hour recalls repeated on a random sub-selection of 37.5% of subjects to allow calculation of nutrient's probability of adequacy (PA). Biomarkers were measured on a sub-sample of 180 mother-child pairs. Blood samples were analyzed for hemoglobin, serum ferritin, soluble transferrin receptors (sTfR), C-reactive protein, alpha-1-glycoprotein, serum zinc concentration (SZnC) and retinol. For each micronutrient the relationship between biomarker and dietary intake was investigated by multiple linear regression models accounting for inflammatory biomarkers. Results Mean PA for iron, zinc and vitamin A was 0.49, 0.87 and 0.21 among women and 0.61, 0.95 and 0.33 among children, respectively. Prevalence of anemia, corrected low serum ferritin and high sTfR was 37.6%, 4.0% and 77.5% among women and 72.1%, 1.5% and 87.6% among children, respectively. Prevalence of low SZnC and corrected low serum retinol was 39.4% and 12.0% among women and 63.7% and 24.8% among children, respectively. There was a tendency for a positive relationship between vitamin A intakes and serum retinol among women (beta = 0.0003, P = 0.06). Otherwise, no link was found between micronutrients biomarkers and intakes. Conclusion Our study depicted different images of micronutrient deficiencies when based on dietary intakes or biomarkers results, thus highlighting the need for more suitable biomarkers and more precise measures of absorbable micronutrient intakes at the individual level. It thus points to challenges in the design and evaluation of future biofortification or other food-based interventions in rural areas of Burkina Faso

    Flat-Band Ferromagnetism in Organic Polymers Designed by a Computer Simulation

    Full text link
    By coupling a first-principles, spin-density functional calculation with an exact diagonalization study of the Hubbard model, we have searched over various functional groups for the best case for the flat-band ferromagnetism proposed by R. Arita et al. [Phys. Rev. Lett. {\bf 88}, 127202 (2002)] in organic polymers of five-membered rings. The original proposal (poly-aminotriazole) has turned out to be the best case among the materials examined, where the reason why this is so is identified here. We have also found that the ferromagnetism, originally proposed for the half-filled flat band, is stable even when the band filling is varied away from the half-filling. All these make the ferromagnetism proposed here more experimentally inviting.Comment: 11 pages, 13figure

    Probing complex RNA structures by mechanical force

    Full text link
    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps", thereby capturing -at the single molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure

    Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C60_{60} (TDAE-C60_{60})

    Full text link
    Critical exponents at the ferromagnetic transition were measured for the first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene fullerene[60] (TDAE-C60_{60}). From a complete magnetization-temperature-field data set near Tc=16.1±0.05,T_{c}=16.1\pm 0.05, we determine the susceptibility and magnetization critical exponents γ=1.22±0.02\gamma =1.22\pm 0.02 and β=0.75±0.03\beta =0.75 \pm 0.03 respectively, and the field vs. magnetization exponent at TcT_{c} of δ=2.28±0.14\delta =2.28\pm 0.14. Hyperscaling is found to be violated by Ωdd1/4\Omega \equiv d^{\prime}-d \approx -1/4, suggesting that the onset of ferromagnetism can be related to percolation of a particular contact configuration of C60_{60} molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let

    Ferromagnetism and giant magnetoresistance in the rare earth fullerides Eu6-xSrxC60

    Get PDF
    We have studied crystal structure, magnetism and electric transport properties of a europium fulleride Eu6C60 and its Sr-substituted compounds, Eu6-xSrxC60. They have a bcc structure, which is an isostructure of other M6C60 (M represents an alkali atom or an alkaline earth atom). Magnetic measurements revealed that magnetic moment is ascribed to the divalent europium atom with S = 7/2 spin, and a ferromagnetic transition was observed at TC = 10 - 14 K. In Eu6C60, we also confirm the ferromagnetic transition by heat capacity measurement. The striking feature in Eu6-xSrxC60} is very large negative magnetoresistance at low temperature; the resistivity ratio \rho(H = 9 T)/\rho(H = 0 T) reaches almost 10^{-3} at 1 K in Eu6C60. Such large magnetoresistance is the manifestation of a strong pi-f interaction between conduction carriers on C60 and 4f electrons of Eu.Comment: 5 pages, 4 figure

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure
    corecore