3,441 research outputs found

    Atmospheric Analysis of the M/L- and M/T-Dwarf Binary Systems LHS 102 and Gliese 229

    Get PDF
    We present 0.9-2.5um spectroscopy with R~800 and 1.12-1.22um spectroscopy with R~5800 for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL' photometry for both components of the LHS 102 system, and L' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disk M/L-dwarf binary system LHS 102 and the kinematically young disk M/T-dwarf binary system Gliese 229. The data are analyzed using synthetic spectra generated by the latest "AMES-dusty" and "AMES-cond" models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely due to the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disk, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young (age ~30 Myr) with masses (A,B) of (0.38,>0.007)M(sun), and the LHS 102 system is older, aged 1-10 Gyr with masses (A,B) of (0.19,0.07)M(sun).Comment: 29 pages incl. 13 figures and 5 tables;; accepted for publication in MNRA

    UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum

    Full text link
    We consider the stochastic propagation of high-energy protons and nuclei in the cosmological microwave and infrared backgrounds, using revised photonuclear cross-sections and following primary and secondary nuclei in the full 2D nuclear chart. We confirm earlier results showing that the high-energy data can be fit with a pure proton extragalactic cosmic ray (EGCR) component if the source spectrum is \propto E^{-2.6}. In this case the ankle in the CR spectrum may be interpreted as a pair-production dip associated with the propagation. We show that when heavier nuclei are included in the source with a composition similar to that of Galactic cosmic-rays (GCRs), the pair-production dip is not present unless the proton fraction is higher than 85%. In the mixed composition case, the ankle recovers the past interpretation as the transition from GCRs to EGCRs and the highest energy data can be explained by a harder source spectrum \propto E^{-2.2} - E^{-2.3}, reminiscent of relativistic shock acceleration predictions, and in good agreement with the GCR data at low-energy and holistic scenarios.Comment: 4 pages, 4 figures, submitted to A&A Letters (minor changes, two figures replaced, two references added

    Regularity of higher codimension area minimizing integral currents

    Full text link
    This lecture notes are an expanded version of the course given at the ERC-School on Geometric Measure Theory and Real Analysis, held in Pisa, September 30th - October 30th 2013. The lectures aim to explain the main steps of a new proof of the partial regularity of area minimizing integer rectifiable currents in higher codimension, due originally to F. Almgren, which is contained in a series of papers in collaboration with C. De Lellis (University of Zurich).Comment: This text will appear in "Geometric Measure Theory and Real Analysis", pp. 131--192, Proceedings of the ERC school in Pisa (2013), L. Ambrosio Ed., Edizioni SNS (CRM Series

    Extragalactic cosmic-ray source composition and the interpretation of the ankle

    Full text link
    We consider the stochastic propagation of high-energy protons and nuclei in the cosmological microwave and infrared backgrounds, using revised photonuclear cross-sections and following primary and secondary nuclei in the full 2D nuclear chart. We confirm earlier results showing that the high-energy data can be fit with a pure proton extragalactic cosmic ray (EGCR) component if the source spectrum is E2.6\propto E^{-2.6}. In this case the ankle in the cosmic ray (CR) spectrum may be interpreted as a pair-production dip associated with the propagation. We show that when heavier nuclei are included in the source with a composition similar to that of Galactic cosmic-rays (GCRs), the pair-production dip is not present unless the proton fraction is higher than 85%. In the mixed composition case, the ankle recovers the past interpretation as the transition from GCRs to EGCRs and the highest energy data can be explained by a harder source spectrum E2.2\propto E^{-2.2}-- E2.3E^{-2.3}, reminiscent of relativistic shock acceleration predictions, and in good agreement with the GCR data at low-energy and holistic scenarios. While the expected cosmogenic neutrino fluxes at high energy are very similar for pure proton and mixed composition hypothesis, the two scenarii predict very different elongation rates from 1017.510^{17.5} to 102010^{20} eV.Comment: 4 Pages, 4 Figures, to appear in the 29th ICRC (Pune, India) proceeding

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter

    Get PDF
    The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the VLT. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral type. In our sample, we measured minimum binary fraction of 9.13.0+9.99.1^{+9.9}_{-3.0}. From the best fit of the BT-Settl models 2014 to the observed spectra, we derived the atmospheric parameters for the single objects. The BT-Settl models were able to reproduce the majority of the SEDs from our objects, and the variation of the equivalent width of the RbI (794.8 nm) and CsI (852.0 nm) lines with the spectral type. Nonetheless, these models did not reproduce the evolution of the equivalent widths of the NaI (818.3 nm and 819.5 nm) and KI (1253 nm) lines with the spectral type.Comment: Accepted for publication in MNRA

    Contingent categorization in speech perception

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Language Cognition and Neuroscience in 2014, available online: http://www.tandfonline.com/10.1080/01690965.2013.824995.The speech signal is notoriously variable, with the same phoneme realized differently depending on factors like talker and phonetic context. Variance in the speech signal has led to a proliferation of theories of how listeners recognize speech. A promising approach, supported by computational modeling studies, is contingent categorization, wherein incoming acoustic cues are computed relative to expectations. We tested contingent encoding empirically. Listeners were asked to categorize fricatives in CV syllables constructed by splicing the fricative from one CV syllable with the vowel from another CV syllable. The two spliced syllables always contained the same fricative, providing consistent bottom-up cues; however on some trials, the vowel and/or talker mismatched between these syllables, giving conflicting contextual information. Listeners were less accurate and slower at identifying the fricatives in mismatching splices. This suggests that listeners rely on context information beyond bottom-up acoustic cues during speech perception, providing support for contingent categorization

    Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles)

    Get PDF
    Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0 (gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples.We find that dissolved elemental Hg0 (aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0 aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano
    corecore