4,619 research outputs found

    Sound propagation over uneven ground and irregular topography

    Get PDF
    The acoustic impedance of the surface coverings used in the laboratory experiments on sound diffraction by topographical ridges was determined. The model, which was developed, takes into account full wave effects and the possibility of surface waves and predicts the sound pressure level at the receiver location relative to what would be expected if the flat surface were not present. The sound pressure level can be regarded as a function of frequency, sound speed in air, heights of source and receiver, and horizontal distance from source to receiver, as well as the real and imaginary parts of the surface impedance

    Novel components of the Toxoplasma inner membrane complex revealed by BioID.

    Get PDF
    UNLABELLED:The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. IMPORTANCE:The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma

    Cardiovascular Imaging in the Management of Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is he most commonly encountered arrhythmia in clinical practice, with an overall prevalence of 0.4% in the general population. Recent advances in technology and in the understanding of the pathophysiology of AF have led to more definitive and potentially curative therapeutic approaches. Echocardiography has a well-established role in the assessment of cardiac structure and function and risk stratification, and has become an essential part of the guidelines for management of AF. The development of intracardiac echocardiography has led to real-time guidance of percutaneous interventions, including radiofrequency ablation and left atrial appendage closure procedures for patients with AF. Other imaging modalities, including computed tomography and magnetic resonance angiography, have allowed for more accurate measurement and better understanding of the cardiac anatomy. We review the impact of various imaging modalities in the evaluation and management of AF

    Polymorphic segmental duplication in the nematode Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nematode <it>Caenorhabditis elegans </it>was the first multicellular organism to have its genome fully sequenced. Over the last 10 years since the original publication in 1998, the <it>C. elegans </it>genome has been scrutinized and the last gaps were filled in November 2002, which present a unique opportunity for examining genome-wide segmental duplications.</p> <p>Results</p> <p>Here, we performed analysis of the <it>C. elegans </it>genome in search for segmental duplications using a new tool–OrthoCluster–we have recently developed. We detected 3,484 duplicated segments–duplicons–ranging in size from 234 bp to 108 Kb. The largest pair of duplicons, 108 kb in length located on the left arm of <it>Chromosome V</it>, was further characterized. They are nearly identical at the DNA level (99.7% identity) and each duplicon contains 26 putative protein coding genes. Genotyping of 76 wild-type strains obtained from different labs in the <it>C. elegans </it>community revealed that not all strains contain this duplication. In fact, only 29 strains carry this large segmental duplication, suggesting a very recent duplication event in the <it>C. elegans </it>genome.</p> <p>Conclusion</p> <p>This report represents the first demonstration that the <it>C. elegans </it>laboratory wild-type N2 strains has acquired large-scale differences.</p

    Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia

    Get PDF
    Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively. Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur

    Peritoneal and hemodialysis: I. Differences in patient characteristics at initiation

    Get PDF
    Peritoneal and hemodialysis: I. Differences in patient characteristics at initiation.BackgroundComparisons of mortality outcomes between peritoneal dialysis (PD) and hemodialysis (HD) patients have shown varying results, which may be caused by the unequally distributed clinical conditions of patients at initiation. To address this issue, we evaluated the clinical characteristics of 105,954 patients at the initiation of PD and HD, using the U.S. national incidence data on treated end-stage renal disease from the Medical Evidence Form, 1995 to 1997.MethodsA general linear model was used to analyze differences of age, albumin, creatinine, blood urea nitrogen (BUN), and hematocrit; categorical data analysis to evaluate body mass index (BMI), grouped into four categories: !19, 19–25 (!25), 25–30 (!30), and 30+; and logistic regression to assess the likelihood of initiating PD versus HD. Diabetics (DM) were analyzed separately from non-diabetics (NDM). Explanatory variables in the logistic regression included incidence year, race, gender, age, BMI, albumin, creatinine, BUN, and hematocrit. Race included white and black. Age was categorized into four groups: 20–44, 45–64, 65–74, and 75+.ResultsAt the initiation of dialysis PD patients were approximately 6 years younger (P ! 0.0001) than HD patients. PD patients also had higher (P ! 0.0001) albumin (+0.35 g/dL for DM and +0.23 g/dL for NDM) and hematocrit (+1.64% for DM and +1.71% for NDM) levels, and lower (P ! 0.04) BUN (-8.75 mg/dL for DM and -5.24 mg/dL for NDM) and creatinine (-0.51 mg/dL for DM and -0.23 mg/dL for NDM) levels than HD patients. Whites had a higher (P ! 0.0001) likelihood of starting PD than blacks, and patients with BMI !19 had a lower (P ! 0.0001) chance of beginning on PD.ConclusionPD patients had favorable clinical conditions at the initiation of dialysis, which should be taken into consideration when comparing dialysis outcomes between the two modalities

    Spin excitations in metallic kagome lattice FeSn and CoSn

    Full text link
    In two-dimensional (2D) metallic kagome lattice materials, destructive interference of electronic hopping pathways around the kagome bracket can produce nearly localized electrons, and thus electronic bands that are flat in momentum space. When ferromagnetic order breaks the degeneracy of the electronic bands and splits them into the spin-up majority and spin-down minority electronic bands, quasiparticle excitations between the spin-up and spin-down flat bands should form a narrow localized spin-excitation Stoner continuum coexisting with well-defined spin waves in the long wavelengths. Here we report inelastic neutron scattering studies of spin excitations in 2D metallic Kagome lattice antiferromagnetic FeSn and paramagnetic CoSn, where angle resolved photoemission spectroscopy experiments found spin-polarized and nonpolarized flat bands, respectively, below the Fermi level. Although our initial measurements on FeSn indeed reveal well-defined spin waves extending well above 140 meV coexisting with a flat excitation at 170 meV, subsequent experiments on CoSn indicate that the flat mode actually arises mostly from hydrocarbon scattering of the CYTOP-M commonly used to glue the samples to aluminum holder. Therefore, our results established the evolution of spin excitations in FeSn and CoSn, and identified an anomalous flat mode that has been overlooked by the neutron scattering community for the past 20 years

    Mapping the unconventional orbital texture in topological crystalline insulators

    Get PDF
    The newly discovered topological crystalline insulators (TCIs) harbor a complex band structure involving multiple Dirac cones. These materials are potentially highly tunable by external electric field, temperature or strain and could find future applications in field-effect transistors, photodetectors, and nano-mechanical systems. Theoretically, it has been predicted that different Dirac cones, offset in energy and momentum-space, might harbor vastly different orbital character, a unique property which if experimentally realized, would present an ideal platform for accomplishing new spintronic devices. However, the orbital texture of the Dirac cones, which is of immense importance in determining a variety of materials properties, still remains elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI Pb1x_{1-x}Snx_xSe. By using Fourier-transform (FT) scanning tunneling spectroscopy (STS) we measure the interference patterns produced by the scattering of surface state electrons. We discover that the intensity and energy dependences of FTs show distinct characteristics, which can directly be attributed to orbital effects. Our experiments reveal the complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands in this new class of topological materials, which could provide a different pathway towards future quantum applications
    corecore