116 research outputs found

    MRKAd5 HIV-1 Gag/Pol/Nef Vaccine-Induced T-Cell Responses Inadequately Predict Distance of Breakthrough HIV-1 Sequences to the Vaccine or Viral Load

    Get PDF
    Background: The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods: Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings: Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0.04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0.06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0.04; Pol p = 0.13; Gag p = 0.89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p. 0.50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4.7 vs 5.1) but the difference was not significant (p = 0.27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0.30). Interpretation: Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.National Institute of Allergy and Infectious Diseases [R37AI054165-08, UM1AI068635, UM1AI068618]National Institute of Allergy and Infectious Disease

    Impact of LS Mutation on Pharmacokinetics of Preventive HIV Broadly Neutralizing Monoclonal Antibodies: A Cross-Protocol Analysis of 16 Clinical Trials in People without HIV

    Get PDF
    Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV. We described serum concentrations of these monoclonal antibodies following intravenous or subcutaneous administration by an open two-compartment disposition, with first-order elimination from the central compartment using non-linear mixed effects pharmacokinetic models. We compared estimated pharmacokinetic parameters using the targeted maximum likelihood estimation method, accounting for participant differences. We observed lower clearance rate, central volume, and peripheral volume of distribution for all LS variants compared to parental monoclonal antibodies. LS monoclonal antibodies showed several improvements in pharmacokinetic parameters, including increases in the elimination half-life by 2.7- to 4.1-fold, the dose-normalized area-under-the-curve by 4.1- to 9.5-fold, and the predicted concentration at 4 weeks post-administration by 3.4- to 7.6-fold. Results suggest a favorable pharmacokinetic profile of LS variants regardless of HIV epitope specificity. Insights support lower dosages and/or less frequent dosing of LS variants to achieve similar levels of antibody exposure in future clinical applications

    Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

    Get PDF
    Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response

    Neutralization profiles of HIV-1 viruses from the VRC01 Antibody Mediated Prevention (AMP) trials

    Get PDF
    The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals. The majority of viruses identified were clade B and C; with clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25, PGDM1400, PGT121, 10–1074 and 10E8v4) for neutralization against all AMP placebo viruses (n = 76). Compared to older clade C viruses (1998–2010), the HVTN703/HPTN081 clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a concentration of 1ΞΌg/ml (IC80), predictive modeling identified the triple combination of V3/V2-glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valuable resource for defining the sensitivity of contemporaneous circulating viral strains to bnAbs and highlight the need to update reference panels regularly. Our data also suggests that combining bnAbs in passive immunization trials would improve coverage of global viruses

    Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition

    Get PDF
    BACKGROUND : Whether a broadly neutralizing antibody (bnAb) can be used to prevent human immunodeficiency virus type 1 (HIV-1) acquisition is unclear. METHODS : We enrolled at-risk cisgender men and transgender persons in the Americas and Europe in the HVTN 704/HPTN 085 trial and at-risk women in sub-Saharan Africa in the HVTN 703/HPTN 081 trial. Participants were randomly assigned to receive, every 8 weeks, infusions of a bnAb (VRC01) at a dose of either 10 or 30 mg per kilogram (low-dose group and high-dose group, respectively) or placebo, for 10 infusions in total. HIV-1 testing was performed every 4 weeks. The VRC01 80% inhibitory concentration (IC80) of acquired isolates was measured with the TZM-bl assay. RESULTS : Adverse events were similar in number and severity among the treatment groups within each trial. Among the 2699 participants in HVTN 704/HPTN 085, HIV-1 infection occurred in 32 in the low-dose group, 28 in the high-dose group, and 38 in the placebo group. Among the 1924 participants in HVTN 703/HPTN 081, infection occurred in 28 in the low-dose group, 19 in the high-dose group, and 29 in the placebo group. The incidence of HIV-1 infection per 100 person-years in HVTN 704/ HPTN 085 was 2.35 in the pooled VRC01 groups and 2.98 in the placebo group (estimated prevention efficacy, 26.6%; 95% confidence interval [CI], βˆ’11.7 to 51.8; P = 0.15), and the incidence per 100 person-years in HVTN 703/HPTN 081 was 2.49 in the pooled VRC01 groups and 3.10 in the placebo group (estimated prevention efficacy, 8.8%; 95% CI, βˆ’45.1 to 42.6; P = 0.70). In prespecified analyses pooling data across the trials, the incidence of infection with VRC01-sensitive isolates (IC80 <1 ΞΌg per milliliter) per 100 person-years was 0.20 among VRC01 recipients and 0.86 among placebo recipients (estimated prevention efficacy, 75.4%; 95% CI, 45.5 to 88.9). The prevention efficacy against sensitive isolates was similar for each VRC01 dose and trial; VRC01 did not prevent acquisition of other HIV-1 isolates. CONCLUSIONS : VRC01 did not prevent overall HIV-1 acquisition more effectively than placebo, but analyses of VRC01-sensitive HIV-1 isolates provided proof-of-concept that bnAb prophylaxis can be effective.Supported by Public Health Service Grants (UM1 AI068614, to the HIV Vaccine Trials Network [HVTN]; UM1 AI068635, to the HVTN Statistical Data and Management Center [SDMC], Fred Hutchinson Cancer Research Center [FHCRC]; UM1 AI068618, to HVTN Laboratory Center, FHCRC; UM1 AI068619, to the HPTN Leadership and Operations Center; UM1 AI068613, to the HIV Prevention Trials Network [HPTN] Laboratory Center; UM1 AI068617, to the HPTN SDMC; and P30 AI027757, to the Center for AIDS Research, University of Washington) from the National Institute of Allergy and Infectious Diseases (NIAID) and by the Intramural Research Program of the NIAID.http://www.nejm.orgam2022School of Health Systems and Public Health (SHSPH

    Assessing Vaccine Effects in HIV-1 Vaccine Trials: Antigenic Maps, Antigen Selection, and Sieve Analysis

    No full text
    Thesis (Ph.D.)--University of Washington, 2013The goal of vaccination against infectious disease is a net population effect on the risk of infection and/or disease progression. In HIV-1 vaccine development efforts to date only a single HIV-1 vaccine trial has shown any efficacy by either of these measures. Despite this lack of success, we hope to inform future vaccine design by analyzing vaccine effects in HIV-1 vaccine trials. We expect to detect these effects through one of three measures: 1) differential vaccine-elicited responses among cases and controls in an immune correlates of risk analysis, 2) differential host genetics by treatment assignment among infected trial participants, or 3) differential viral genetics of breakthrough infecting strains by treatment assignment of the host (known as a sieve effect). In this thesis we begin by developing methods for aggregating biomarkers for use in an immune correlates of risk analysis via antigenic maps. We show that antigenic maps can be used as a bridge to understand connections between immune correlates of risk analysis results, differential host genetics and local effects in a sieve analysis. Next, we discuss the critical step of identifying panels of antigens for use in bioassays that can be used to generate antigenic maps and compare immune response outcomes between HIV-1 vaccine trials. The last part of this thesis develops sieve analysis methods that focus on epitopes, the underlying unit of the adaptive immune system response
    • …
    corecore