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Abstract

The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016

and 2020 showed for the first time that passively administered broadly neutralizing antibod-

ies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses

isolated from AMP participants who acquired infection during the study in the sub-Saharan

African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials

represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to

investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being con-

sidered for clinical development. Pseudoviruses were constructed using envelope

sequences from 218 individuals. The majority of viruses identified were clade B and C; with

clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We
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tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25,

PGDM1400, PGT121, 10–1074 and 10E8v4) for neutralization against all AMP placebo

viruses (n = 76). Compared to older clade C viruses (1998–2010), the HVTN703/HPTN081

clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a con-

centration of 1μg/ml (IC80), predictive modeling identified the triple combination of V3/V2-

glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against

clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/

VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan

directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valu-

able resource for defining the sensitivity of contemporaneous circulating viral strains to

bnAbs and highlight the need to update reference panels regularly. Our data also suggests

that combining bnAbs in passive immunization trials would improve coverage of global

viruses.

Author summary

HIV-1 viruses from the Antibody Mediated Prevention (AMP) trials, obtained in 2016–

2020, represent our most recent panel of transmitted viruses in the population. Reference

virus strains that are currently used to evaluate broadly neutralizing antibodies (bnAb) for

passive immune trials and assess the quality of vaccine induced antibody responses, were

collected between 1998 and 2010. As HIV-1 continues to evolve, virus panels may need to

be updated from time to time. Sequences were obtained from participants infected with

HIV-1 from both the African (HVTN 703/HPTN081) and the Americas/European

(HVTN 704/HPTN085) AMP trials. These viruses were then tested in a neutralization

assay with 8 bnAbs under clinical development. Comparing the neutralization coverage

with older viruses, we found that recent viruses have become more resistant to VRC07-

523LS and CAP256.25 antibodies. Predictive modelling identified triple bnAb combina-

tions that would be effective at neutralizing HIV-1 strains from different geographical

regions. Reference panels that include recently transmitted HIV-1 strains provide impor-

tant information that can be used to design bnAb combinations to consider for prevention

studies.

Introduction

Broadly neutralizing antibodies (bnAbs) represent a promising approach for the prevention of

human immunodeficiency virus (HIV-1) infection. Several studies have demonstrated that

passively administered antibodies can protect non-human primates (NHP) from Simian-

human immunodeficiency virus (SHIV) infection [1–4], however this had not been assessed in

humans until recently. Through a large, coordinated effort, the Antibody Mediated Prevention

(AMP) trials evaluated whether long-term administration of a passively infused bnAb VRC01

(which targets the CD4 binding site, CD4bs) could prevent HIV-1 acquisition in humans [5].

A total of 4,600 at-risk participants were enrolled in the AMP trial from diverse geographical

regions including countries in Sub-Saharan Africa (South Africa, Zimbabwe, Botswana, Tan-

zania, Kenya, Malawi, Zambia), America (USA, Peru, Brazil), and Europe (Switzerland). The

results demonstrated that VRC01 could prevent HIV-1 infection, but that prevention efficacy

was dependent on the sensitivity of circulating viruses to VRC01 [5]. Thus, prevention efficacy
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was high (75%) against viruses that were sensitive to VRC01 (IC80<1μg/ml) but there was no

efficacy against viruses with IC80 values>1μg/ml which constitute the majority of circulating

strains and no significant protection overall.

The viruses isolated early in infection during the AMP trials provide a valuable tool going

forward. There is evidence that over time, circulating viruses have diversified significantly and

become more resistant to certain, previously isolated bnAbs [6,7]. A study of 200 Clade C

viruses collected early in infection between 1998–2010 showed an increase in neutralization

resistance over time to antibodies targeting the CD4bs (VRC01), V2-glycan (PG9) and MPER

(4E10) [6]. This evolution resulted in a near doubling of the VRC01 concentration needed to

reach 50% inhibition of clade C viruses over these 13 years. Clade B viruses have exhibited the

same pattern of resistant phenotypes emerging over time [7,8]. Resistance to neutralization

has been attributed to amino acid changes, V1V2 loop length, and additions of glycans [6,9–

11]. These observations suggest that viral reference panels need to be updated periodically to

obtain accurate sensitivity data for new bnAbs under investigation. Several neutralization ref-

erence panels exist and comprise viruses that have been characterized and tested against differ-

ent sera and bnAbs [6,12,13]. However, these panels represent viruses circulating between

1998 and 2010, highlighting the urgent need to characterize the contemporaneous circulating

viruses provided by the AMP trials a decade later.

The AMP trial also emphasized the fact that future bnAb trials will require combinations of

more potent antibodies with better coverage to improve overall prevention efficacy. Many

Phase I trials utilizing more potent and/or broader bnAbs are underway, including assess-

ments of combinations of bnAbs in HIV-1 prevention and suppression [14,15]. Predictive sta-

tistical modeling has suggested that second-generation bnAbs, particularly when used in

combination, can neutralize close to 100% of global HIV-1 strains [16,17]. However, these

bnAb coverage predictions are only accurate if modeled using data generated with currently

circulating viruses.

Here, we show the sensitivity of viruses from AMP trial placebo recipients isolated early

during infection (within 45 days from the estimated time of acquisition) to clinically relevant

bnAbs and identify signatures that may be responsible for genetic drift. Our study provides

data that will be useful to evaluate bnAb candidates for passive immunization trials and also

offers an opportunity to update reference panels.

Results

Phylogenetic sequence analysis of viruses acquired by AMP trial

participants

HIV-1 Env were sequenced from 218 infections in both AMP trials. In some cases, more than

one Env was sequenced from an infection and the dominant clone was selected for analysis.

There were 91 HIV-1 infections across all the study arms of the HVTN 703/HPTN 081 AMP

trial (placebo = 33, low dose = 36, high dose = 22), with 89 participants infected with clade C,

one with clade G (from Kenya) and one with an A/C recombinant (South Africa) (Fig 1). Most

infections were from South Africa (n = 53), followed by Zimbabwe (n = 15), Malawi (n = 14),

Botswana (n = 6), Mozambique (n = 2) and Kenya (n = 1). There were no infections from the

Tanzania site at the time of our analysis. Phylogenetic analysis of the envelope sequences from

HVTN 703/HPTN 081 demonstrated an equal spread of clade C sequences across the tree

regardless of country of origin.

In the HVTN 704/HPTN 085 trial, there were 127 HIV-1 infections across all arms (pla-

cebo = 47, low dose = 42, high dose = 38). There was a higher clade diversity of HIV-1 enve-

lope sequences in this trial compared to HVTN 703/HPTN 081 (Fig 1): 94 participants
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acquired clade B, 14 clade F, 2 A1/B recombinants, 15 B/F recombinants, 1 B/D recombinant,

1 clade C, and 1 clade D subtypes. A large proportion of infections were from Peru (n = 94),

and the United States of America (n = 29) followed by Brazil (n = 3) and Switzerland (n = 1).

Clade B sequences in HVTN 704/HPTN 085 did not cluster by country of origin, however the

majority of F and B/F recombinants were identified in South American participants.

Neutralization sensitivity of AMP pseudoviruses to clinically relevant

bnAbs

An assessment of VRC01 neutralization sensitivity using pseudoviruses generated from the

envelope sequences was part of the primary analysis of the trial [5], which showed that less

than 30% of these pseudoviruses were sensitive to VRC01 at an IC80< 1μg/ml. In this study,

we further examined their sensitivity to seven bnAbs undergoing clinical testing, representa-

tive of four distinct epitope regions: CD4bs (VRC07-523LS, 3BNC117), V2 glycan

(CAP256.25, PGDM1400), V3 glycan (PGT121, 10–1074), and MPER (10e8v4). An analysis of

the median neutralization titers showed VRC07-523LS as the most potent (IC80<1μg/ml)

CD4bs bnAb against pseudoviruses in the placebo and high dose groups of HVTN 703/HPTN

081 and HVTN 704/HPTN 085 (Fig 2A and 2B). The IC80 neutralization sensitivity for all

1,248 env-pseudovirus/bnAb combinations, which includes all 317 Envs sequenced from 218

infections, is shown in heat maps (S1 Table). There was a significant difference between the

pseudoviruses in the placebo and the low dose (p = 0.04) and high dose (p = 0.02) arms for

Fig 1. Phylogenetic analysis of envelope nucleotide sequences from the AMP trials. Sequences from all arms of

HVTN703/HPTN081 (purple branches) and HVTN704/HPTN085 (green branches) are shown in the tree. Each

participant is represented by a single Env gene sequence. The ends of the branches are coloured according to the

country of origin: Peru (bright blue), South Africa (red), United States (teal), Zimbabwe (orange), Malawi (pink),

Botswana (dark teal), Brazil (dark blue), Mozambique (yellow), Switzerland (blue), and Kenya (brown). Branches in

black (with no coloured ends) represent reference strains from different clades. The scale is shown at the bottom.

https://doi.org/10.1371/journal.ppat.1011469.g001
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VRC07-523LS but not with the other bnAbs in HVTN 704/HPTN 085 (Fig 2B). A similar

trend was observed for VRC01 in both trials, although this was not significant.

Neutralization profiles of AMP placebo viruses

Next, we focused on the pseudoviruses in the placebo arms (n = 76) for both AMP trials (here-

after referred to as “AMP placebo viruses”) and generated a hierarchical clustering heatmap

comparing viral neutralization against the same bnAbs (Fig 3). We did not include viruses in

the VRC01 arm in this analysis as antibody pressure may have led to selection [18]. The great-

est breadth in HVTN 703/HPTN 081 was seen with VRC07-523LS (Fig 3A) and 10E8v4 neu-

tralized all the viruses tested in HVTN 704/HPTN 085 (Fig 3B). There was a clear grouping

between V2-glycan bnAb sensitive and non-sensitive viruses in HVTN 703/HPTN 081 with a

clear overlap in sensitivity except for 5 viruses that were differentially sensitive to either

CAP256.25 or PGDM1400. Unlike in clade C-dominant HVTN 703/HPTN 081, HVTN 704/

HPTN 085 had a low frequency of viruses sensitive to CAP256.25 (4/43) and PGDM1400 (17/

43) (Fig 3B). This is consistent with previous results showing that clade B viruses are not well

neutralized by V2-glycan targeting antibodies [19–21].

Comparison of clade C AMP placebo arm viruses to historical Clade C

Panel viruses

We and others have previously shown that antigenic drift impacts bnAb sensitivity [6–8]. We

therefore compared clade C viruses from the placebo arm of the HVTN 703/HPTN 081 AMP

Fig 2. Neutralization profiles of pseudoviruses from the different study arms of the AMP trials. Box plots illustrate

neutralization data (IC80 titers, median and range) of all viruses against 8 bnAbs in clinical development and separated

according to study arms in (A) HVTN703/HPTN081 (placebo n = 33, low dose n = 35, high dose n = 21) and (B)

HVTN704/HPTN085 (placebo n = 47, low dose n = 42, high dose n = 38). Solid bars represent median titers.

https://doi.org/10.1371/journal.ppat.1011469.g002
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trial (n = 31) to the previously characterized 200 Clade C Panel of viruses collected between

1998 and 2010. These historical viruses were split into two roughly equal groups: 1998–2006

(n = 96) and 2007–2010 (n = 104). All viruses were assayed against the same eight bnAbs tar-

geting four distinct epitopes. The AMP placebo viruses were found to be significantly more

resistant to the CD4bs bnAb VRC07-523LS (p = 0.02) and the V2-glycan specific bnAb

CAP256.25 (p = 0.03) compared to historical viruses (Fig 4A). A trend towards increased resis-

tance to VRC01, 3BNC117 and PGDM1400 was also observed over time although significance

was not reached. PGT121 and 10–1074 neutralization sensitivity remained unchanged over

the periods assessed.

Diversity of HIV-1 sequences in the V2 bnAb epitope

Since we had observed a significant change in the sensitivity of viruses to CAP256.25 over

time, we next evaluated the amino acid (AA) changes in key contact and signature sites in

viruses across the 3 time periods (1998–2006, 2007–2010, 2016–2020) [22] (Fig 4B). The AAs

that make up the sequence “OERDK” are each associated with sensitivity to CAP256.25

[22,23] and we identified a decrease in the frequency of viruses with this motif in the recent

time interval. There was an overall decrease in frequency of sites associated with sensitivity to

CAP256.25 (the glycan at position 160, the Lysine and Arginine at 169) and an increase in fre-

quency of sites associated with resistance to CAP256.25 (Lysine at 166). We next investigated

whether V1V2 loop lengths and glycan density changed over time as these features are linked

to neutralization sensitivity. Current viruses (2016–2020) had significantly longer V1V2 loops

Fig 3. Neutralization profiles of pseudoviruses from the placebo arms of the AMP trials. Hierarchical clustering

was utilized to analyze virus/bnAb combinations for HVTN703/HPTN081 (A) and HVTN704/HPTN085 (B) viruses

were clustered according to their neutralization profiles along the vertical axes and bnAbs by sensitivity along the

horizontal axes. A tally of the number of viruses by neutralization sensitivity (IC80 titer) and colour key is shown on

the upper right corners of the plots. All sequences for HVTN703/HPTN081 are clade C and all sequences for

HVTN704/HPTN085 are clade B unless otherwise denoted (●G, ▲F, �F2, □ A/B recombinant, ■B/F recombinant).

https://doi.org/10.1371/journal.ppat.1011469.g003
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compared to the older viruses (Fig 4C). Glycan density in the V1V2 region was also signifi-

cantly higher in the current viruses compared to viruses from the earliest group (1998–2006)

(Fig 4D). Overall, this result supports the more resistant neutralization phenotype of newer

viruses against CAP256.25 (Fig 4B).

Fig 4. Neutralization sensitivity and genetic characteristics of historical clade C viruses compared to AMP

placebo viruses. (A) Previously characterized clade C panel viruses were analyzed according to time of collection

(1998–2006, 2007–2010) and their sensitivity to bnAbs was compared to placebo viruses from AMP (2016–2020). The

cut-off IC50 for VRC01 is 10μg/ml; 20μg/ml for 3BNC117, PGT121 and 10–1074; 25μg/ml for VRC07-523LS,

CAP256.25 and PGDM1400. The Jonckheere-Terpstra trend test was used to determine changes in neutralization

sensitivity over time and p<0.05 was considered significant. (B) logogram of clade C viruses for sites linked to

CAP256.25 resistance/sensitivity for the three time periods. The amino acid frequency (y-axis) is shown for each

residue at positions 160,164,166,167 and 169. The size of each AA in the logogram is proportional to its frequency and

the “O” represents N-linked glycans. Residues associated with a sensitive neutralization phenotype are in red while

residues in blue represent resistant residues. Residues that are not associated with either resistant or sensitive are in

black. (C) V1V2 loop length and (D) the number of potential N-linked glycosylation sites were compared across the

three time periods. The Mann-Whitney test was used to compare differences between the groups and p<0.05 was

considered significant.

https://doi.org/10.1371/journal.ppat.1011469.g004
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Predicted coverage of triple bnAb combination against the AMP placebo

viruses

The AMP trial demonstrated that viruses that were sensitive to VRC01 with an IC80

of<1μg/ml were blocked from establishing infection [5]. Therefore, we used the neutralization

data we generated from the AMP placebo viruses to predict active coverage, illustrated sche-

matically in (Fig 5A) at IC80 <1μg/ml and potent and broad bnAb combinations. We focused

on clade C viruses from HVTN 703/HPTN 081 and clade B viruses from HVTN 704/HPTN

085 (Fig 5B and 5C).

Clade C coverage by individual antibodies was less than 50% for all bnAbs (IC80<1μg/ml)

except for CAP256.25 (~59%) and VRC07-523LS (~70%) (Fig 5B and S1 Table). Combina-

tions of three bnAbs, where at least one of them can neutralize the virus, increased coverage to

close to 100% as expected (Fig 5). The best triple combinations against clade C viruses were

10-1074/PGDM1400/VRC07-523LS which resulted in 100% coverage and 10-1074/

CAP256.25/VRC07-523LS with 97% coverage (Fig 5B and S2 Table). However, this coverage

was reduced to around 50% in a dual active scenario (the proportion of viruses neutralized by

at least two bnAbs) and around 20% when modeling triple active coverage (the proportion of

viruses neutralized by all three bnAbs). Replacing PGDM1400 with CAP256.25 decreased sin-

gle coverage slightly but achieved higher dual and triple active coverage.

Predictive modeling of clade B viruses identified 10E8v4/10-1074/VRC07-523LS and

10E8v4/PGT121.414LS/VRC07-523LS as the best triple combinations with coverage of 100%

for both (Fig 5C and S2 Table). Replacing 10–1074 with PGT121.414LS decreased the dual

active coverage from 52% to 39% but the triple active coverage was maintained at 12%. Inter-

estingly, substituting the V3 bnAbs (either 10–1074 and PGT121) with PGDM1400 still main-

tained a coverage of 100% for 1 active bnAb but the dual and triple-active coverage was

reduced to 18% and 0% respectively.

Discussion

Characterization of viruses from early in infection from both sub-Saharan African and Ameri-

can/European populations provides an important resource for assessing the potential efficacy

of bnAbs under clinical development. Evolution of HIV-1 at a population level has been linked

to the emergence of neutralization-resistant phenotypes [7,8] presenting a serious challenge to

successful bnAb mediated prevention. Here we investigated viruses from the AMP trials which

are representative of the HIV-1 epidemic across 11 countries in sub-Saharan Africa, North

and South America and Europe between 2016 and 2020, offering relevant information about

circulating viruses. Furthermore, these viral strains offer the opportunity to update previously

established panels assembled with viruses between 1998 and 2010 [6,12,13], a necessary step

towards HIV prevention and cure.

A considerable challenge facing the field is the continued evolution of HIV-1 resulting in

evasion of immune responses. Reference panels have been utilized to standardize the compari-

son of breadth and magnitude of neutralization responses between trials [6,12,13]. The estab-

lished 200 virus Clade C Panel being used for current studies is made up of viruses isolated

between 1998 to 2010. Here, we collected clade C viruses isolated between 2016 and 2020 as a

first step towards building an updated reference panel. Importantly, these recent viruses dis-

played increased neutralization resistance to CAP256.25 (p = 0.03) and VRC07-523LS

(p = 0.02) compared to the historical 200 Clade C Panel. These results are consistent with data

from Indian Clade C viruses showing resistance to CAP256.25 at a population level over time

[24]. Rademeyer et al also observed that viruses became increasingly resistant to VRC01

(CD4bs), PG9 (V2-binding) and 4E10 (MPER/gp41-binding) over a 13-year period [6]. While
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Fig 5. Predicted coverage of bnAb combinations against circulating viruses. (A) Diagram illustrating neutralization coverage (created with

BioRender.com). “1 Active” is the percent of viruses neutralized by at least one bnAb, “2 Active” is the percent of viruses that can be neutralized by at

least two bnAbs, “3 Active” is the percent of viruses that can be neutralized by all three bnAbs. Neutralization coverage by single antibodies (black)

was calculated at IC80<1μg/ml.Using the Bliss Hill Independence model, the active coverage of the antibodies in triple combinations (purple shades

for HVTN703/HPTN081 and green shades for HVTN704/HPTN085) was calculated based on the single antibody neutralization data with (B)

HVTN703/HPTN081 (clade C) viruses and (C) HVTN704/HPTN085 (clade B) viruses. Coverage at 50% and 90% is indicated by the dotted lines.

https://doi.org/10.1371/journal.ppat.1011469.g005
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a significant decrease in sensitivity to VRC01 was not observed in our study, we did note a

trend towards resistance to VRC01 and 3BNC117, which share some signature contact sites

[25–28], suggesting a shift in general resistance to CD4bs antibodies over time [6,24]. The

increased resistance to CD4bs and V2 bnAbs suggests the possibility that similar responses are

common in HIV infection and are responsible for applying selective pressure to viral popula-

tions. These data also have implications for active vaccination. For example, while promising

proof-of-concept results with a vaccine able to elicit CD4bs bnAb precursors have recently

been published [29], our study suggests that these VRC01-like bnAbs could show reduced

activity against current viruses, further highlighting the need to evaluate the efficacy of new

bnAbs with contemporaneous viruses.

A few specific hallmarks were apparent that could account for the increased resistance.

Compared to the older 200 Clade C Panel viruses, recent viruses demonstrated an overall

increase in glycans associated with resistance and decrease in glycans associated with sensitiv-

ity to CAP256.25 [22,23]. Furthermore, recent viruses had longer V1V2 loop lengths. Over the

course of infection, it has been shown that viruses develop increased V1V2 loop lengths [30],

thus affecting neutralization sensitivity [11,21,31,32]. Longer V1V2 loops may alter the confor-

mation of the viral protein structure and affect sensitivity of the virus to bnAbs targeting differ-

ent epitopes [11,33,34]. Our data supports these findings and emphasize the importance of

taking these viral changes into consideration when evaluating candidate bnAbs.

The AMP trials demonstrated that HIV-1 prevention can be achieved by bnAb administra-

tion if the circulating viruses have a neutralization sensitivity (IC80) of<1μg/ml [5]. In our

study comparing bnAbs of clinical interest, VRC07-523LS had the highest coverage (>70% at

<1μg/ml) and potency against clade C viruses, consistent with the 200 Clade C Panel data

[16], and also showed good coverage against clade B viruses. CAP256.25 potency was higher

than that of VRC07-523LS when looking at the geometric mean titer of the sensitive viruses

but had low breadth with ~60% coverage at IC80<1μg/ml for clade C viruses and only <10%

for clade B viruses. This indicates that in passive immunization trials, CAP256.25 would need

to be administered in combination with a broader bnAb to increase the coverage of clade C

viruses neutralized and would not be useful against clade B viruses.

We utilized predictive modeling to investigate the effectiveness of bnAb combinations

against historical and currently circulating viruses in vitro. Phenotypic differences between

clade C viruses from the African AMP trial and clade B viruses from the American/European

AMP trial were reflected in the predicted bnAb combinations that would be the most effective.

In our study, 10-1074/PGDM1400/VRC07-523LS was predicted to be the optimal combina-

tion achieving 100% coverage at IC80 = 1μg/ml against clade C viruses. Previously, Wagh et al

identified the triple bnAb combination CAP256.25/VRC07-523/10-1074 as the best in terms

of coverage and potency in a predictive model when using the 200 Clade C Panel viruses and

bnAb data [16]. While both combinations include V2-glycan-targeting antibodies, we

observed that the combination with CAP256.25 achieved 97% coverage. However, the dual-

active and triple-active bnAb coverage with CAP256.25 performed slightly better than

PGDM1400 against the recent viruses, possibly due to better complementarity of CAP256.25

with PGT121 at IC80<1μg/ml. Overall, selecting a triple combination that offers>90% cover-

age for 1 active antibody and at least 50% for dual active (different epitopes) may be beneficial

to mitigate the effect of antibody escape.

While the best triple combinations against clade C viruses included V2/V3/CD4bs bnAbs,

clade B viruses were better targeted by bnAbs that recognized MPER/V3/CD4bs, as we

observed that 10E8v4/10-1074/VRC07-523LS and 10E8v4/PGT121.414LS/VRC07-523LS were

the combinations with the highest coverage. Combinations with PGDM1400 had reduced dual

and triple bnAb activity against clade B viruses due to the low coverage by V2-targeting
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antibodies, whereas 10E8v4, which has better overall breadth but lower potency, proved to be

beneficial and achieved 100% coverage. Unfortunately, Phase 1 trials that were planned with

10E8 co-administered with other more potent antibodies were paused due to reactogenicity

observed in a participant after infusion (NCT03565315). Efforts continue to engineer a safer,

increased half-life version of 10E8 which is a promising candidate for bnAb combinations

[35–37]. Combinations of potent antibodies for prevention will improve overall breadth and

lessen the effect of antibody resistance/escape.

Several approaches are being utilized to address the limitations of breadth and neutralizing

potency of current bnAbs, as highlighted by the AMP trial results [5]. Optimization of existing

HIV-1 bnAbs for enhanced potency has generated potent bnAbs such as VRC01.23LS, achiev-

ing ~10-fold improved potency and breadth higher than the parental VRC01 antibody [38].

Similarly, VRC07 was engineered with a series of mutations to generate VRC07-523, which is

also about 10-fold more potent than the parental bnAb [39]. Furthermore, bi-or tri-specific

antibodies that combine Fab portions from different antibodies demonstrate enhanced breadth

and potency compared to the single antibodies [40]. In addition to the above Fab changes, mod-

ifications to the Fc portion of neutralizing antibodies to improve the half-life in serum is crucial

for the maintenance of therapeutic concentrations, therefore increasing prevention efficacy.

The “LS” mutation engineered into bnAb clinical candidates extends longevity of circulating

bnAbs [36,37]. For VRC01, the LS mutation increased the half-life fourfold [41]. Overall, the

combination of improved neutralization potency, breadth, and extended half-life may generate

antibodies that require lower doses and with longer boosting intervals, ultimately reducing clin-

ical trial and treatment costs. Reduction in costs could bode well for the use of bnAbs as PrEP,

but there still remains a challenge of resistance to bnAbs that may develop in individuals over

time. Therefore, bnAbs would likely be adjunctive to existing PrEP regimens.

While this study had a limited sample size of current viruses (n = 31) being compared to

the historical 200 Clade C Panel, there are emerging opportunities to expand our 2016–2020

virus repository to include viruses from other HVTN trials such as HVTN 702 [42]

(NCT02968849) and HVTN 705 (NCT03060629). Despite the moderate neutralization sensi-

tivity shifts of the clade C viruses in the last 10 years, HIV-1 continues to evolve and there is a

need to replace older viral sequences (<2010 period) with currently circulating viral sequences

in standard reference panels. In addition, most of the bnAbs in clinical development, and

tested in this study, were isolated almost 10 years ago [43–45]. This time-lag may affect the sen-

sitivity of current viruses to these bNAbs, and therefore, isolation and testing of bNAbs from

more recent infections against contemporaneous virus panels will be of interest. Having rele-

vant HIV-1 sequences for reference will ensure that an accurate evaluation of the effectiveness

of bnAbs being tested is conducted, informing improved clinical trial design and ongoing

development of superior bnAbs.

Materials and methods

Ethical statement

All work described here complied with all relevant ethical regulations. This work was approved

by the Duke University Health System Institutional Review Board (Duke University) through

protocol no. Pro00093087. For the National Institute for Communicable Diseases (NICD), the

work was approved by the University of the Witwatersrand Human Research Ethics Commit-

tee through protocol no. M201105. The Institutional Review Boards/Ethic Committees of par-

ticipating clinical research sites (CRS)approved the studies, which were conducted under the

oversight of the NIAID Data Safety Monitoring Board (DSMB). All participants gave written

informed consent.
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Study participants

The HVTN 703/HPTN 081 AMP trial enrolled 1,924 women at risk of HIV-1 infection from

sub-Saharan Africa; 11 sites in South Africa, 3 in Zimbabwe, 2 in Malawi, and 1 each in

Botswana, Kenya, Mozambique, and Tanzania. The HVTN 704/HPTN 085 AMP trial enrolled

2,704 men and transgender persons at risk of HIV-1 infection from the Americas and Europe;

19 sites in the United States, 5 in Peru, 1 in Brazil and 1 in Switzerland [5]. Participants were

randomly assigned in a 1:1:1 ratio to receive placebo, intravenous VRC01 of 10 mg/kg (low

dose), or 30 mg/kg (high dose) at 8-week intervals for 72 weeks. HIV-1 infection was deter-

mined by plasma RNA testing every 4 weeks.

Sequencing of viruses from participants infected with HIV-1 in the AMP

trials

Viruses from the first HIV-1 RNA positive visit were sequenced using Sanger consensus and

single genome amplification and sequencing and/or PacBio Single-Molecule-Real Time

(SMRT) sequencing [46]. The envelope sequence representing the major lineage was synthe-

sized. Variants present in more than ~10% of the population were also synthesized resulting in

317 synthesized Env sequences from a total of 218 HIV-1 breakthrough infections.

Pseudovirus production and neutralization assays

Env-pseudotyped viruses were produced via transfection of the envelope plasmids in 293T

cells as previously described [47,48]. Neutralization sensitivity of the viruses to a panel of

monoclonal antibodies was assessed in the TZM-bl neutralization assay [49,50] and compared

to historical data (CATNAP https://www.hiv.lanl.gov) [6]. Results were expressed as IC80 val-

ues which is the 80% inhibitory antibody concentration required to neutralize 80% of HIV-1

infection in TZM.bl target cells.

Generation of phylogenetic trees

For subtyping, the env nucleotide sequence that was present at the highest frequency was

selected per participant and was compared to a representative panel of clades (www.lanl.gov).

An alignment was created with MACSE v2.06. An ML tree was generated with RAxML-ng

(version 1.1.0) using the optimal model (GTR+I+G4, with ModelTest-ng), and 1000 bootstrap

replicates. The tree was drawn and coloured with Dendroscope 3.7.6, and additional annota-

tions added with InkScape 1.1.2. Trees illustrating neutralization sensitivities were generated

using all synthesized env sequences and computed using FastTree2 [51] with a GTR+CAT

model and drawn using the package ggtree [52].

Bliss-Hill Independence model for predicting bnAb combination

neutralization coverage

The IC80 values from bnAb combinations based on the Bliss-Hill Independence model were

calculated as previously described [16,53].

f cð Þ ¼
cm

ðkm þ cmÞ

Where c = bnAb concentration, k = IC50, and

m ¼
logð4Þ

logðIC80Þ � logðIC50Þ
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The combination neutralization curve is then calculated using the Bliss Independence model,

f ¼ 1 � ð1 � f ðAÞÞð1 � f ðBÞÞ . . . ð1 � f ðNÞÞ

with f(A), f(B), etc. being the individual functions of the IgG antibodies. Combination IC50 or

IC80 titers are calculated by setting f = 0.5 or 0.8 and assuming each IgG is present at the same

concentration.

Active dual or triple coverage was calculated by considering that respectively both or all

three antibodies were able to neutralize the virus at a given concentration.

Generation of logograms for the V1V2 region

The nucleotide alignment of the clade C viruses, containing the reference sequence for HXB2

were translated to amino acid space, using the LANL tool “Codon Alignment v2.1.0” (https://

www.hiv.lanl.gov/content/sequence/CodonAlign/codonalign.html). Logograms were created

for the viruses from the following groups: 1998–2006 (n = 96), 2007–2010 (n = 104), 2016–

2020 Placebo (n = 31) using the LANL tool “Analyze Align” (https://www.hiv.lanl.gov/

content/sequence/ANALYZEALIGN/analyze_align.html). Sites included in the logogram

were colour-coded according to available information on resistance/sensitivity to neutraliza-

tion by CAP256-VRC26.25 [22]. The sites were numbered according to HXB2 position.

Generation of Heatmaps

IC80 neutralization data from the two trials was used to generate heatmaps and clustering

analysis. Heatmaps were created using the LANL tool “Heatmap” (https://www.hiv.lanl.gov/

content/sequence/HEATMAP/heatmap_mainpage.html) with the option of hierarchical clus-

tering. Clusters were compared using Fisher exact tests.

Variable loop characteristics

The same data that were used as input for generating the logograms, were used to analyze vari-

able loop characteristics. Characteristics of the variable loop regions V1, V2, V1V2, V3, V4

and V5 were analyzed using the LANL tool “Variable Region Characteristics” (https://www.

hiv.lanl.gov/cgi-bin/VAR_REG_CHAR). Results were imported into R for analysis.

Statistical analysis

Comparisons between groups were done using the Mann-Whitney U test on GraphPad Prism.

This was applied to the neutralization sensitivities of viruses in the placebo arm compared to

those in the VRC01 arm of the AMP trial. A Jonckheere-Terpstra test was used to compare the

IC80s of all AMP placebo viruses to the 200 Clade C Panel viruses using the package “Desc-

Tools” [54]. A Dunn test with Bonferroni correction for multiple testing was also used to

determine which pair(s) of periods had significant differences. P values of<0.05 were consid-

ered statistically significant. Statistical analyses were generated using R (version 4.1.2 (2021-

11-01) — "Bird Hippie") (R Core Team, 2021) and graphs plotted using GraphPad Prism.

Supporting information

S1 Table. Neutralization profiles of viruses from the AMP trials assayed against bnAbs in

clinical development.

(XLSX)
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S2 Table. Predicted coverage of bnAb combinations against circulating viruses.

(XLSX)
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