6,373 research outputs found
Recommended from our members
Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination.
In this report, we show that a new mechanism for carrier transport in solution-processed colloidal semiconductor nanocrystal arrays exists at high excitation intensity on ultrafast time scales and allows for facile intrinsic transport between as-prepared nanocrystals over long distances. By combining a high speed photoconductive switch with an ultrafast laser excitation in a sub-40 ps photoconductor, we observed transient photocurrents with peak densities of 3 × 104 - 106 mA/cm2 in self-assembled PbSe nanocrystals capped with long native oleic acid ligands. The ratio between the transient photocurrent peak and the steady-state dark current is 10 orders of magnitude. The transient mobility at the peak current is estimated to range between 0.5-17.5 cm2/(V s) for the various nanocrystal sizes studied, which is 6 to 9 orders of magnitude higher than the dark current steady-state mobility in PbSe, CdSe, and CdTe nanocrystals capped with native ligands. The results are analyzed using a kinetic model which attributes the ultrahigh transient photocurrent to multiple photogenerated excitons undergoing on-particle Auger recombination, followed by rapid tunneling at high energies. This mechanism is demonstrated for a wide range of PbSe nanocrystals sizes (diameters from 2.7 to 7.1 nm) and experimental parameters. Our observations indicate that native ligand-capped nanocrystal arrays are promising for optoelectronics applications wherein multiple carriers are photoinjected to interband states
Recommended from our members
The Underlying Chemical Mechanism of Selective Chemical Etching in CsPbBr3 Nanocrystals for Reliably Accessing Near-Unity Emitters.
Reliably accessing nanocrystal luminophores with near-unity efficiencies aids in the ability to understand the upper performance limits in optoelectronic applications that require minimal nonradiative losses. Constructing structure-function relationships at the atomic level, while accounting for inevitable defects, allows for the development of robust strategies to achieve near-unity quantum yield luminophores. For CsPbBr3 perovskite nanocrystals, bromine vacancies leave behind undercoordinated lead atoms that act as traps, limiting the achievable optical performance of the material. We show that selective etching represents a promising path for mitigating the consequences of optical defects in CsPbBr3 nanocrystals. A mechanistic understanding of the etching reaction is essential for developing strategies to finely control the reaction. We report a study of the selective etching mechanism of CsPbBr3 nanocrystal cubes by controlling the etchant chemical potential. We observe optical absorption and luminescence trajectories while varying the extent and rate of lead removal, removing in some cases up to 75% of the lead from the original nanocrystal ensemble. At modest etchant chemical potentials, the size and shape uniformity of the nanocrystal ensemble improves in addition to the quantum yield, proceeding through a layer-by-layer etching mechanism. Operating with excessively high etchant chemical potentials is detrimental to the overall optical performance as the etching transitions to nonselective, while too low of a chemical potential results in incomplete etching. Through this general approach, we show how to finely control selective etching to consistently access a steady state or chemical stability zone of near-unity quantum yield CsPbBr3 nanocrystals postsynthetically, suggesting a practical framework to extend this treatment to other perovskite compositions and sizes
Recommended from our members
Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks.
The goal of this work is to identify favored pathways for preparation of defect-resilient attached wurtzite CdX (X = S, Se, Te) nanocrystals. We seek guidelines for oriented attachment of faceted nanocrystals that are most likely to yield pairs of nanocrystals with either few or no electronic defects or electronic defects that are in and of themselves desirable and stable. Using a combination of in situ high-resolution transmission electron microscopy (HRTEM) and electronic structure calculations, we evaluate the relative merits of atomic attachment of wurtzite CdSe nanocrystals on the {11̅00} or {112̅0} family of facets. Pairwise attachment on either facet can lead to perfect interfaces, provided the nanocrystal facets are perfectly flat and the angles between the nanocrystals can adjust during the assembly. Considering defective attachment, we observe for {11̅00} facet attachment that only one type of edge dislocation forms, creating deep hole traps. For {112̅0} facet attachment, we observe that four distinct types of extended defects form, some of which lead to deep hole traps whereas others only to shallow hole traps. HRTEM movies of the dislocation dynamics show that dislocations at {11̅00} interfaces can be removed, albeit slowly. Whereas only some extended defects at {112̅0} interfaces could be removed, others were trapped at the interface. Based on these insights, we identify the most resilient pathways to atomic attachment of pairs of wurtzite CdX nanocrystals and consider how these insights can translate to the creation of electronically useful materials from quantum dots with other crystal structures
Germanium quantum dots: Optical properties and synthesis
Three different size distributions of Ge quantum dots (>~200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Gamma25-->L indirect transitions
Neutrino Oscillation Experiments at Nuclear Reactors
In this paper I give an overview of the status of neutrino oscillation
experiments performed using nuclear reactors as sources of neutrinos. I review
the present generation of experiments (Chooz and Palo Verde) with baselines of
about 1 km as well as the next generation that will search for oscillations
with a baseline of about 100 km. While the present detectors provide essential
input towards the understanding of the atmospheric neutrino anomaly, in the
future, the KamLAND reactor experiment represents our best opportunity to study
very small mass neutrino mixing in laboratory conditions. In addition KamLAND
with its very large fiducial mass and low energy threshold, will also be
sensitive to a broad range of different physics.Comment: 10 pages, 5 figures To appear in the proceedings of WIN99, Cape Town,
South Africa, Jan9
Chemical patterning for the highly specific and programmed assembly of nanostructures
We have developed a new chemical patterning technique based on standard lithography-based processes to assemble nanostructures on surfaces with extraordinarily high selectivity. This patterning process is used to create patterns of aminosilane molecular layers surrounded by highly inert poly (ethylene glycol) (PEG) molecules. While the aminosilane regions facilitate nanostructure assembly, the PEG coating prevents adsorption of molecules and nanostructures, thereby priming the semiconductor substrate for the highly localized and programmed assembly of nanostructures. We demonstrate the power and versatility of this manufacturing process by building multilayered structures of gold nanoparticles attached to molecules of DNA onto the aminosilane patterns, with zero nanocrystal adsorption onto the surrounding PEG regions. The highly specific surface chemistry developed here can be used in conjunction with standard microfabrication and emerging nanofabrication technology to seamlessly integrate various nanostructures with semiconductor electronics
Magnetic Domains and Surface Effects in Hollow Maghemite Nanoparticles
In the present work, we investigate the magnetic properties of ferrimagnetic
and noninteracting maghemite (g-Fe2O3) hollow nanoparticles obtained by the
Kirkendall effect. From the experimental characterization of their magnetic
behavior, we find that polycrystalline hollow maghemite nanoparticles are
characterized by low superparamagnetic-to-ferromagnetic transition
temperatures, small magnetic moments, significant coercivities and
irreversibility fields, and no magnetic saturation on external magnetic fields
up to 5 T. These results are interpreted in terms of the microstructural
parameters characterizing the maghemite shells by means of an atomistic Monte
Carlo simulation of an individual spherical shell model. The model comprises
strongly interacting crystallographic domains arranged in a spherical shell
with random orientations and anisotropy axis. The Monte Carlo simulation allows
discernment between the influence of the structure polycrystalline and its
hollow geometry, while revealing the magnetic domain arrangement in the
different temperature regimes.Comment: 26 pages, 8 figures. In press in Phys. Rev.
Electron (hole) paramagnetic resonance of spherical CdSe nanocrystals
A new mechanism of electron paramagnetic resonance in spherical zinc-blende
semiconductor nanocrystals, based on the extended orbital motion of electrons
in the entire nanocrystal, is presented. Quantum confinement plays a crucial
role in making the resonance signal observable. The mechanism remains operative
in nanocrystals with uniaxially distorted shape. A theoretical model based on
the proposed mechanism is in good quantitative agreement with unusual ODMR
spectra observed in nearly spherical CdSe nanocrystals.Comment: 4 pages, 2 figure
Detection of topological transitions by transport through molecules and nanodevices
We analyze the phase transitions of an interacting electronic system weakly
coupled to free-electron leads by considering its zero-bias conductance. This
is expressed in terms of two effective impurity models for the cases with and
without spin degeneracy. We demonstrate using the half-filled ionic Hubbard
ring that the weight of the first conductance peak as a function of external
flux or of the difference in gate voltages between even and odd sites allows
one to identify the topological charge transition between a correlated
insulator and a band insulator.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
- …
