137 research outputs found

    Synovial tissue macrophages: friend or foe?

    Get PDF
    Healthy synovial tissue includes a lining layer of synovial fibroblasts and macrophages. The influx of leucocytes during active rheumatoid arthritis (RA) includes monocytes that differentiate locally into proinflammatory macrophages, and these produce pathogenic tumour necrosis factor. During sustained remission, the synovial tissue macrophage numbers recede to normal. The constitutive presence of tissue macrophages in the lining layer of the synovial membrane in healthy donors and in patients with RA during remission suggests that this macrophage population may have a role in maintaining and reinstating synovial tissue homeostasis respectively. Recent appreciation of the different origins and functions of tissue-resident compared with monocyte-derived macrophages has improved the understanding of their relative involvement in organ homeostasis in mouse models of disease. In this review, informed by mouse models and human data, we describe the presence of different functional subpopulations of human synovial tissue macrophages and discuss their distinct contribution to joint homeostasis and chronic inflammation in RA

    Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission

    Get PDF
    Synovial tissue macrophages (STMs) were principally recognized as having a pro-inflammatory role in rheumatoid arthritis (RA), serving as the main producers of pathogenic tumour necrosis factor (TNF). Recent advances in single-cell omics have facilitated the discovery of distinct STM populations, providing an atlas of discrete phenotypic clusters in the context of healthy and inflamed joints. Interrogation of the functions of distinct STM populations, via ex vivo and experimental mouse models, has re-defined our understanding of STM biology, opening up new opportunities to better understand the pathology of the arthritic joint. These works have identified STM subpopulations that form a protective lining barrier within the synovial membrane and actively participate in the remission of RA. We discuss how distinct functions of STM clusters shape the synovial tissue environment in health, during inflammation and in disease remission, as well as how an increased understanding of STM heterogeneity might aid the prediction of clinical outcomes and inform novel treatments for RA.In this Review, the authors discuss the characterization of distinct synovial tissue macrophage (STM) populations and their functions in the context of the healthy and arthritic joint. They also describe how distinct STMs are specified, how they respond to danger signals and the clinical implications of understanding STM heterogeneity

    MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. MiR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in Rheumatoid Arthritis, and its potential as a disease biomarker and therapeutic target

    MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis

    Get PDF
    MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA

    The Role of High-Mobility Group Box-1 and Its Crosstalk with Microbiome in Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic, definitely disabling, and potentially severe autoimmune disease. Although an increasing number of patients are affected, a key treatment for all patients has not been discovered. High-mobility group box-1 (HMGB1) is a nuclear protein passively and actively released by almost all cell types after several stimuli. HMGB1 is involved in RA pathogenesis, but a convincing explanation about its role and possible modulation in RA is still lacking. Microbiome and its homeostasis are altered in patients with RA, and the microbiota restoration has been proposed to patients with RA. The purpose of the present review is to analyze the available evidences regarding HMGB1 and microbiome roles in RA and the possible implications of the crosstalk between the nuclear protein and microbiome in understanding and possibly treating patients affected by this harmful condition

    Impaired pro‐resolving mechanisms promote abnormal NETosis , fueling autoimmunity in sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorders with still high mortality and morbidity and limited therapeutic options. SCD is characterized by anemia, chronic hemolysis, and acute vaso-occlusive painful crises. The biocomplexity of SCD goes beyond red cells, involving neutrophils and soluble factors such as cytokines or alternative complement pathway intensively cross-talking with vascular endothelial cells. In addition, in SCD, the overactivation of neutrophils contributes to the production of neutrophil extracellular traps (NETs) (1, 2). This might trigger endothelial vascular injury, promoting acute sickle cell related events and increasing the risk of infections in patients with SC

    PTPN22 1858C>T Polymorphism Distribution in Europe and Association with Rheumatoid Arthritis: Case-Control Study and Meta-Analysis

    Get PDF
    The PTPN22 rs2476601 polymorphism is associated with rheumatoid arthritis (RA); nonetheless, the association is weaker or absent in some southern European populations. The aim of the study was to evaluate the association between the PTPN22 rs2476601 polymorphism and RA in Italian subjects and to compare our results with those of other European countries, carrying out a meta-analysis of European data
    corecore