21 research outputs found

    First Detection of the Crab Pulsar above 100 GeV

    Full text link
    We present the detection of pulsed gamma-ray emission from the Crab pulsar above 100 GeV with the VERITAS array of atmospheric Cherenkov telescopes. Gamma-ray emission at theses energies was not expected in pulsar models. The detection of pulsed emission above 100 GeV and the absence of an exponential cutoff makes it unlikely that curvature radiation is the primary production mechanism of gamma rays at these energies.Comment: 5 pages, proceedings of the TAUP 2011 conference in Munich, German

    VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275

    Full text link
    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter

    Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS

    Full text link
    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E >> 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations (σ\sigma) and is found to be extended and asymmetric with a width of 9.5^{\prime}±\pm1.2^{\prime} along the major axis and 4.0^{\prime}±\pm0.5^{\prime} along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ±\pm 0.14stat_{stat} ±\pm 0.21sys_{sys} and a normalization of (9.5 ±\pm 1.6stat_{stat} ±\pm 2.2sys_{sys}) ×\times 1013^{-13}TeV1^{-1} cm2^{-2} s1^{-1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation

    VERITAS Observations of the BL Lac Object 1ES 1218+304

    Full text link
    The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with high statistical significance for the observations taken during several months in the 2006-2007 observing season. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34(stat) +/- 0.2(sys). The integral flux above 200 GeV corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light (EBL) in the near-IR to mid-IR we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum is harder than a power law with an index of Gamma = 2.32 +/- 0.37. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    MULTIWAVELENGTH OBSERVATIONS OF A TeV-FLARE FROM W COMAE

    Get PDF
    We report results from an intensive multiwavelength campaign on the intermediate-frequency-peaked BL Lacertae object W Com (z = 0.102) during a strong outburst of very high energy gamma-ray emission in 2008 June. The very high energy gamma-ray signal was detected by VERITAS on 2008 June 7-8 with a flux F(>200 GeV) = (5.7 +/- 0.6) x 10(-11) cm(-2) s(-1), about three times brighter than during the discovery of gamma-ray emission from W Com by VERITAS in 2008 March. The initial detection of this flare by VERITAS at energies above 200 GeV was followed by observations in high-energy gamma rays (AGILE; E(gamma) >= 100 MeV), X-rays (Swift and XMM-Newton), and at UV, and ground-based optical and radio monitoring through the GASP-WEBT consortium and other observatories. Here we describe the multiwavelength data and derive the spectral energy distribution of the source from contemporaneous data taken throughout the flare

    High-energy gamma rays and neutrinos from nearby radio galaxies

    No full text

    Very-High-Energy Outburst of Markarian 501 in May 2009

    Get PDF
    The very high energy (VHE; E> 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54 938-54 956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE γ-ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E > 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 × 10-11 ph cm-2 s-1), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15°. This VHE flare showed a fast flux variation with an increase of a factor ∼4 in 25 min, and a falling time of ∼50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.Fil: Aliu, E.. Columbia University; Estados UnidosFil: Archambault, S.. McGill University; CanadáFil: Archer, A.. Washington University in St. Louis; Estados UnidosFil: Arlen, T.. University of California at Los Angeles; Estados UnidosFil: Aune, T.. University of California at Los Angeles; Estados UnidosFil: Barnacka, A.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Behera, B.. Deutsche Elektronen-synchrotron; AlemaniaFil: Beilicke, M.. Washington University in St. Louis; Estados UnidosFil: Benbow, W.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Berger, K.. University of Delaware; Estados UnidosFil: Bird, R.. University College Dublin; IrlandaFil: Böttcher, M.. North-west University; SudáfricaFil: Bouvier, A.. University of California; Estados UnidosFil: Buchovecky, M.. University of California at Los Angeles; Estados UnidosFil: Buckley, J. H.. Washington University in St. Louis; Estados UnidosFil: Bugaev, V.. Washington University in St. Louis; Estados UnidosFil: Cardenzana, J. V.. University of Iowa; Estados UnidosFil: Cerruti, M.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Cesarini, A.. National University of Ireland Galway; IrlandaFil: Chen, X.. Desy; AlemaniaFil: Ciupik, L.. Adler Planetarium and Astronomy Museum; Estados UnidosFil: Collins Hughes, E.. University College Dublin; IrlandaFil: Connolly, M. P.. National University of Ireland Galway; IrlandaFil: Cui, W.. Purdue University; Estados UnidosFil: Dumm, J.. University Of Minnesota; Estados UnidosFil: Eisch, J. D.. University of Iowa; Estados UnidosFil: Falcone, A.. University of Pennsylvania; Estados UnidosFil: Federici, S.. University of Potsdam; AlemaniaFil: Feng, Q.. Purdue University; Estados UnidosFil: Pichel, Ana Carolina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Rovero, Adrian Carlos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: The Veritas Collaboration.Fil: Cillis, Analia Nilda. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin
    corecore