10 research outputs found

    Muscle Fascicles Exhibit Limited Passive Elongation Throughout the Rehabilitation of Achilles Tendon Rupture After Percutaneous Repair

    Get PDF
    Achilles tendon rupture (ATR) results in long-term functional and structural deficits, characterized by reduced ankle mobility and plantarflexor muscle atrophy. However, it remains unclear how such functional impairments develop after surgical repair. While it is known that this injury negatively affects the tendon's function, to date, limited work has focused on the short-term effect of ATR on the structure of the muscles in series. The aim of this study was to characterize changes in medial gastrocnemius architecture and its response to passive lengthening during the post-surgical rehabilitative period following ATR. Both injured and contralateral limbs from 10 subjects (1 female, BMI: 27.2 ± 3.9 kg/m2; age: 46 ± 10 years) with acute, unilateral ATR were assessed at 8, 12, and 16 weeks after percutaneous surgical repair. To characterize the component tissues of the muscle-tendon unit, resting medial gastrocnemius muscle thickness, fascicle length, and pennation angle were determined from ultrasound images with the ankle in both maximal plantarflexion and dorsiflexion. The ankle range of motion (ROM) was determined using motion capture; combined ultrasound and motion capture determined the relative displacement of the musculotendinous junction (MTJ) of the AT with the medial gastrocnemius. The ATR-injured gastrocnemius muscle consistently exhibited lower thickness, regardless of time point and ankle angle. Maximal ankle plantarflexion angles and corresponding fascicle lengths were lower on the injured ankle compared to the contralateral throughout rehabilitation. When normalized to the overall ankle ROM, both injured fascicles and MTJ displacement exhibited a comparably lower change in length when the ankle was passively rotated. These results indicate that when both ankles are passively exposed to the same ROM following ATR surgery, both ipsilateral Achilles tendon and gastrocnemius muscle fascicles exhibit limited lengthening compared to the contralateral MTU tissues. This appears to be consistent throughout the rehabilitation of gait, suggesting that current post-operative rehabilitative exercises do not appear to induce muscle adaptations in the affected MTU

    The Recovery of Weight-Bearing Symmetry After Total Hip Arthroplasty Is Activity-Dependent

    Get PDF
    This study aimed to characterize ipsilateral loading and return to weight-bearing symmetry (WBS) in patients undergoing total hip arthroplasty (THA) during activities of daily living (ADLs) using instrumented insoles. A prospective study in 25 THA patients was performed, which included controlled pre- and postoperative follow-ups in a single rehabilitation center of an orthopedic department. Ipsilateral loading and WBS of ADLs were measured with insoles in THA patients and in a healthy control group of 25 participants. Measurements in the THA group were performed at 4 different visits: a week pre-THA, within a week post-THA, 3-6 weeks post-THA, and 6-12 weeks post-THA, whereas the healthy control group was measured once. ADLs included standing comfortably, standing evenly, walking, and sit-to-stand-to-sit (StS) transitions. All ADLs were analyzed using discrete methods, and walking included a time-scale analysis to provide temporal insights in the ipsilateral loading and WBS waveforms. THA patients only improved beyond their pre-surgery levels while standing comfortably (ipsilateral loading and WBS, p < 0.05) and during StS transitions (WBS, p < 0.05). Nevertheless, patients improved upon their ipsilateral loading and WBS deficits observed within a week post-surgery across all investigated ADLs. Ipsilateral loading and WBS of THA patients were comparable to healthy participants at 6-12 weeks post-THA, except for ipsilateral loading during walking (p < 0.05) at the initial and terminal double-leg support period of the stance phase. Taken together, insole measurements allow for the quantification of ipsilateral loading and WBS deficits during ADLs, identifying differences between pre- and postoperative periods, and differentiating THA patients from healthy participants. However, post-THA measurements that lack pre-surgery assessments may not be sensitive to identifying patient-specific improvements in ipsilateral loading and WBS. Moreover, StS transitions and earlier follow-up time points should be considered an important clinical metric of biomechanical recovery after THA

    Quantifying Asymmetry in Gait: The Weighted Universal Symmetry Index to Evaluate 3D Ground Reaction Forces

    Get PDF
    Though gait asymmetry is used as a metric of functional recovery in clinical rehabilitation, there is no consensus on an ideal method for its evaluation. Various methods have been proposed to analyze single bilateral signals but are limited in scope, as they can often use only positive signals or discrete values extracted from time-scale data as input. By defining five symmetry axioms, a framework for benchmarking existing methods was established and a new method was described here for the first time: the weighted universal symmetry index (wUSI), which overcomes limitations of other methods. Both existing methods and the wUSI were mathematically compared to each other and in respect to their ability to fulfill the proposed symmetry axioms. Eligible methods that fulfilled these axioms were then applied using both discrete and continuous approaches to ground reaction force (GRF) data collected from healthy gait, both with and without artificially induced asymmetry using a single instrumented elbow crutch. The wUSI with a continuous approach was the only symmetry method capable of identifying GRF asymmetry differences in different walking conditions in all three planes of motion. When used with a continuous approach, the wUSI method was able to detect asymmetries while avoiding artificial inflation, a common problem reported in other methods. In conclusion, the wUSI is proposed as a universal method to quantify three-dimensional GRF asymmetries, which may also be expanded to other biomechanical signals

    Intramuscular and intratendinous placenta‐derived mesenchymal stromal‐like cell treatment of a chronic quadriceps tendon rupture

    Get PDF
    Background: Quadriceps tendon ruptures (QTRs) are rare but debilitating injuries, often associated with chronic metabolic conditions or long-term steroid treatment. While the surgical treatment for acute QTRs is described thoroughly, no common strategy exists for the often frustrating treatment of chronic, reoccurring QTRs. The pro-angiogenic and immunomodulatory properties of placenta-derived adherent mesenchymal stromal-like (PLX-PAD) cells have been described to protect musculoskeletal tissues from inflammation and catabolic cytokine migration, yet little is known about the regenerative potential of PLX-PAD cells in repetitively damaged tendon tissue. Case: We report the case of an 80-year-old male patient with a chronic three-time QTR of his right knee. The quadriceps tendon was reconstructed applying a conventional suture anchor repair procedure combined with a synthetic mesh augmentation and additional intramuscular and intratendineous PLX-PAD cell injections as an individualized treatment approach. No adverse events were reported, and excellent radiological and functional outcomes with a passive range of motion of 0/0/120 degrees knee extension-flexion were observed at the 12 month follow-up. Gait analysis confirmed restoration of joint motion, including gait speed, deficit in step length, and knee extensor muscle strength (pre-surgery: 0.98 m/s, 40 cm, 42.4 +/- 12.4 N; 9 months post-surgery: 1.07 m/s, 0 cm, 10.4 +/- 18.9 N) as well as hyperextension throughout stance and late swing phases (pre-surgery: -11.2 +/- 0.9 degrees; 9 months post-surgery: -2.7 +/- 1.6 degrees). Postoperative lymphocyte and cytokine analyses from the patient's peripheral blood serum suggested a systemic short-term immunoregulatory reaction with postoperatively increased interleukin (IL)-6 (pre-surgery: 0.79 pg/mL; day 1: 139.97 pg/mL; day 5: 5.58 pg/mL; 9 months: 1.76 pg/mL) and IL-10 (pre-surgery: 0.9 pg/mL; day 1: 1.21 pg/ mL; day 5: 0.3 pg/mL; 9 months: 0.34 pg/mL) levels that decreased again over time. Conclusions: Herein, we demonstrate a successfully treated chronic QTR with a synergistic surgical and biological reconstructive treatment approach. This local add-on treatment with PLX-PAD cells may be considered in specific cases of chronic QTRs, not susceptible to traditional suture anchor procedures and which exhibit a high risk of treatment failure. Further scientific engagement is warranted to explore underlying immunomodulatory mechanisms of action behind PLX-PAD cell treatment for tendon injuries

    Does the Calcaneus Serve as Hypomochlion within the Lower Limb by a Myofascial Connection?—A Systematic Review

    Get PDF
    (1) Background: Clinical approaches have depicted interconnectivity between the Achilles tendon and the plantar fascia. This concept has been applied in rehabilitation, prevention, and in conservative management plans, yet potential anatomical and histological connection is not fully understood. (2) Objective: To explore the possible explanation that the calcaneus acts as a hypomochlion. (3) Methods: 2 databases (Pubmed and Livivo) were searched and studies, including those that examined the relationship of the calcaneus to the Achilles tendon and plantar fascia and its biomechanical role. The included studies highlighted either the anatomical, histological, or biomechanical aspect of the lower limb. (4) Results: Seventeen studies were included. Some studies depicted an anatomical connection that slowly declines with age. Others mention a histological similarity and continuity via the paratenon, while a few papers have brought forward mechanical reasoning. (5) Conclusion: The concept of the calcaneus acting as a fulcrum in the lower limb can partially be supported by anatomical, histological, and biomechanical concepts. Despite the plethora of research, a comprehensive understanding is yet to be investigated. Further research exploring the precise interaction is necessary

    Functional outcome and complication rate after percutaneous suture of fresh Achilles tendon ruptures with the Dresden instrument

    Get PDF
    Abstract Background The aim of this study was to evaluate the outcome of patients with a rupture of the Achilles tendon (ATR) treated percutaneously with the Dresden instrument in the hands of surgeons others than its inventors. Materials and methods 118 patients (FU rate: 77.1%) with an acute ATR treated with the Dresden instrument were retrospectively evaluated. The following data were evaluated: pain intensity, functional limitation, Hannover score, Achilles tendon total rupture score (ATRS), AOFAS ankle-hindfoot score, Tegner activity score, complications, maximum calf circumference (MCC) on both sides, and the Matles test for tendon lengthening. The effect of the time point of the surgery after trauma was examined. Results Hannover scores and ATRSs were good; AOFAS scores were excellent. Almost all patients returned to sporting activities postoperatively, and 66.1% were able to return to their previous level. The Tegner activity score revealed a slight posttraumatic decrease (p = 0.009) in the level of physical activity overall (pre-injury: 5.37 ± 0.15; postoperatively: 4.77 ± 0.15). The re-rupture rate was 2%. No sural nerve lesions and no infections were reported. Even after 3 years, there was still a difference in MCC that was correlated with inferior clinical score and AT lengthening. Patients treated within the first 2 days after ATR showed inferior clinical outcomes in terms of AOFAS score, ATRS, and functional limitations. Conclusions Percutaneous ATR suture with the Dresden instrument is a safe and reliable method. Low complication and re-rupture rates, good clinical results, and a high rate of return to play support this fact. The time point of the operation may influence the outcome

    Immunomodulatory placental‐expanded, mesenchymal stromal cells improve muscle function following hip arthroplasty

    No full text
    Abstract Background No regenerative approach has thus far been shown to be effective in skeletal muscle injuries, despite their high frequency and associated functional deficits. We sought to address surgical trauma‐related muscle injuries using local intraoperative application of allogeneic placenta‐derived, mesenchymal‐like adherent cells (PLX‐PAD), using hip arthroplasty as a standardized injury model, because of the high regenerative and immunomodulatory potency of this cell type. Methods Our pilot phase I/IIa study was prospective, randomized, double blind, and placebo‐controlled. Twenty patients undergoing hip arthroplasty via a direct lateral approach received an injection of 3.0 × 108 (300 M, n = 6) or 1.5 × 108 (150 M, n = 7) PLX‐PAD or a placebo (n = 7) into the injured gluteus medius muscles. Results We did not observe any relevant PLX‐PAD‐related adverse events at the 2‐year follow‐up. Improved gluteus medius strength was noted as early as Week 6 in the treatment‐groups. Surprisingly, until Week 26, the low‐dose group outperformed the high‐dose group and reached significantly improved strength compared with placebo [150 M vs. placebo: P = 0.007 (baseline adjusted; 95% confidence interval 7.6, 43.9); preoperative baseline values mean ± SE: placebo: 24.4 ± 6.7 Nm, 150 M: 27.3 ± 5.6 Nm], mirrored by an increase in muscle volume [150 M vs. placebo: P = 0.004 (baseline adjusted; 95% confidence interval 6.0, 30.0); preoperative baseline values GM volume: placebo: 211.9 ± 15.3 cm3, 150 M: 237.4 ± 27.2 cm3]. Histology indicated accelerated healing after cell therapy. Biomarker studies revealed that low‐dose treatment reduced the surgery‐related immunological stress reaction more than high‐dose treatment (exemplarily: CD16+ NK cells: Day 1 P = 0.06 vs. placebo, P = 0.07 vs. 150 M; CD4+ T‐cells: Day 1 P = 0.04 vs. placebo, P = 0.08 vs. 150 M). Signs of late‐onset immune reactivity after high‐dose treatment corresponded to reduced functional improvement. Conclusions Allogeneic PLX‐PAD therapy improved strength and volume of injured skeletal muscle with a reasonable safety profile. Outcomes could be positively correlated with the modulation of early postoperative stress‐related immunological reactions
    corecore