775 research outputs found
The Use of Natural Genetic Diversity in the Understanding of Metabolic Organization and Regulation
The study of metabolic regulation has traditionally focused on analysis of specific enzymes, emphasizing kinetic properties, and the influence of protein interactions and post-translational modifications. More recently, reverse genetic approaches permit researchers to directly determine the effects of a deficiency or a surplus of a given enzyme on the biochemistry and physiology of a plant. Furthermore, in many model species, gene expression atlases that give important spatial information concerning the quantitative expression level of metabolism-associated genes are being produced. In parallel, “top-down” approaches to understand metabolic regulation have recently been instigated whereby broad genetic diversity is screened for metabolic traits and the genetic basis of this diversity is defined thereafter. In this article we will review recent examples of this latter approach both in the model species Arabidopsis thaliana and the crop species tomato (Solanum lycopersicum). In addition to highlighting examples in which this genetic diversity approach has proven promising, we will discuss the challenges associated with this approach and provide a perspective for its future utility
The Natural Variance of the Arabidopsis Floral Secondary Metabolome
Application of mass spectrometry-based metabolomics enables the detection of genotype-related natural variance in metabolism. Differences in secondary metabolite composition of flowers of 64 Arabidopsis thaliana (Arabidopsis) natural accessions, representing a considerable portion of the natural variation in this species are presented. The raw metabolomic data of the accessions and reference extracts derived from flavonoid knockout mutants have been deposited in the MetaboLights database. Additionally, summary tables of floral secondary metabolite data are presented in this article to enable efficient re-use of the dataset either in metabolomics cross-study comparisons or correlation-based integrative analysis of other metabolomic and phenotypic features such as transcripts, proteins and growth and flowering related phenotypes
Plant Single-Cell Metabolomics—Challenges and Perspectives
Omics approaches for investigating biological systems were introduced in the mid-1990s and quickly consolidated to become a fundamental pillar of modern biology. The idea of measuring the whole complement of genes, transcripts, proteins, and metabolites has since become widespread and routinely adopted in the pursuit of an infinity of scientific questions. Incremental improvements over technical aspects such as sampling, sensitivity, cost, and throughput pushed even further the boundaries of what these techniques can achieve. In this context, single-cell genomics and transcriptomics quickly became a well-established tool to answer fundamental questions challenging to assess at a whole tissue level. Following a similar trend as the original development of these techniques, proteomics alternatives for single-cell exploration have become more accessible and reliable, whilst metabolomics lag behind the rest. This review summarizes state-of-the-art technologies for spatially resolved metabolomics analysis, as well as the challenges hindering the achievement of sensu stricto metabolome coverage at the single-cell level. Furthermore, we discuss several essential contributions to understanding plant single-cell metabolism, finishing with our opinion on near-future developments and relevant scientific questions that will hopefully be tackled by incorporating these new exciting technologies
Molecular regulation of seed and fruit set
Seed and fruit set are established during and soon after fertilization and determine seed and fruit number, their final size and, hence, yield potential. These processes are highly sensitive to biotic and abiotic stresses, which often lead to seed and fruit abortion. Here, we review the regulation of assimilate partitioning, including the potential roles of recently identified sucrose efflux transporters in seed and fruit set and examine the similarities of sucrose import and hydrolysis for both pollen and ovary sinks, and similar causes of abortion. We also discuss the molecular origins of parthenocarpy and the central roles of auxins and gibberellins in fruit set. The recently completed strawberry (Fragaria vesca) and tomato (Solanum lycopersicum) genomes have added to the existing crop databases, and new models are starting to be used in fruit and seed set studies
hi2-1, A QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes
Harvest index, defined as the ratio of reproductive yield to total plant biomass, and early ripening are traits with important agronomic value in processing tomatoes. The Solanum pennellii introgression-line (IL) population shows variation for harvest index and earliness. Most of the QTL mapped for these traits display negative agronomic effects; however, hi2-1 is a unique QTL displaying improved harvest index and earliness. This introgression was tested over several years and under different genetic backgrounds. Thirty-one nearly isogenic sub-lines segregating for the 18 cM TG33–TG276 interval were used for fine mapping of this multi-phenotypic QTL. Based on this analysis the phenotypic effects for plant weight, Brix, total yield and earliness were co-mapped to the same region. In a different mapping experiment these sub-lines were tested as heterozygotes in order to map the harvest index QTL which were only expressed in the heterozygous state. These QTL mapped to the same candidate region, suggesting that hi2-1 is either a single gene with pleiotropic effects or represents linked genes independently affecting these traits. Metabolite profiling of the fruit pericarp revealed that a number of metabolic QTL co-segregate with the harvest index trait including those for important transport assimilates such as sugars and amino acids. Analysis of the flowering pattern of these lines revealed induced flowering at IL2-1 plants, suggest that hi2-1 may also affect harvest index and early ripening by changing plant architecture and flowering rate
Sugar deficiency causes changes in cuticle permeability and cell wall composition that influence fruit postharvest shelf-life
The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, and postharvest shelf-life. Tomato fruits with reduced expression of the tomato gene LIN5 encoding cell wall invertase exhibits decreases transpirational water loss. Transcriptomic, biochemical, histological, and biomechanical analysis identified several unsual features of RNAi-LIN5 cuticles and the data indicate that, perturbation of endogenous fruit sugar levels affects the composition of the tomato cuticle and cell wall architecture which are an integral and regulated part of the ripening program affecting the postharvest shelf-life. A model is proposed in which sugar levels affects the cuticle formation which has a direct effect in softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.University of Málaga, Campus de Excelencia Internacional de Andalucia Tech. Spanish Ministry of Science and Innovation (Ramón and Cajal contract, RYC2011-09170
The balance between fumarate and malate plays an important role in plant development and postharvest quality in tomato fruit
Organic acids, produced as intermediates of the tricarboxylic cycle, play a crucial role in the plant primary metabolism and are considered as being ones of the most important quality traits in edible fruits. Even if they are key metabolites in a multitude of cellular functions, little is known about their physiological relevance and regulation. Transgenic tomato (Solanum lycopersicum) plants expressing constitutively a bacterial maleate isomerase, which converts reversibly maleate to fumarate, were generated in order to improve our knowledge about the role of organic acids in the crop and fruit metabolism. Growth and reproduction were affected by the unbalance of tricarboxylic cycle intermediates, as a dwarf phenotype and a flowering delay were observed in the transgenic plants. In addition, a delay in chlorophyll synthesis, a decrease in the numbers of stomata and significant changes in some photosynthetic parameters indicated alterations in central primary metabolism. Postharvest was also impaired, as transgenic fruits showed increased water lost and deterioration, indicating a possible role of the organic acids in cell wall metabolism. Finally, preliminary metabolomics analysis pointed out important changes during fruit ripening in flavor-related metabolites, such as acids and sugars, revealing the importance of organic acids in fruit metabolism. Taken together, these data indicate a pivotal role of tricarboxylic cycle intermediates, such as malate or fumarate, as regulatory metabolites. Besides their role in quality fruit characteristics, they are involved in a multitude of functions including growth and photosynthesis.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
- …