5 research outputs found

    SLPI Inhibits ATP-Mediated Maturation of IL-1β in Human Monocytic Leukocytes: A Novel Function of an Old Player

    Get PDF
    Interleukin-1β (IL-1β) is a potent, pro-inflammatory cytokine of the innate immune system that plays an essential role in host defense against infection. However, elevated circulating levels of IL-1β can cause life-threatening systemic inflammation. Hence, mechanisms controlling IL-1β maturation and release are of outstanding clinical interest. Secretory leukocyte protease inhibitor (SLPI), in addition to its well-described anti-protease function, controls the expression of several pro-inflammatory cytokines on the transcriptional level. In the present study, we tested the potential involvement of SLPI in the control of ATP-induced, inflammasome-dependent IL-1β maturation and release. We demonstrated that SLPI dose-dependently inhibits the ATP-mediated inflammasome activation and IL-1β release in human monocytic cells, without affecting the induction of pro-IL-1β mRNA by LPS. In contrast, the ATP-independent IL-1β release induced by the pore forming bacterial toxin nigericin is not impaired, and SLPI does not directly modulate the ion channel function of the human P2X7 receptor heterologously expressed in Xenopus laevis oocytes. In human monocytic U937 cells, however, SLPI efficiently inhibits ATP-induced ion-currents. Using specific inhibitors and siRNA, we demonstrate that SLPI activates the calcium-independent phospholipase A2β (iPLA2β) and leads to the release of a low molecular mass factor that mediates the inhibition of IL-1β release. Signaling involves nicotinic acetylcholine receptor subunits α7, α9, α10, and Src kinase activation and results in an inhibition of ATP-induced caspase-1 activation. In conclusion, we propose a novel anti-inflammatory mechanism induced by SLPI, which inhibits the ATP-dependent maturation and secretion of IL-1β. This novel signaling pathway might lead to development of therapies that are urgently needed for the prevention and treatment of systemic inflammation

    Amyloid Beta Peptide (Aβ1-42) Reverses the Cholinergic Control of Monocytic IL-1β Release

    No full text
    Amyloid-β peptide (Aβ1-42), the cleavage product of the evolutionary highly conserved amyloid precursor protein, presumably plays a pathogenic role in Alzheimer’s disease. Aβ1-42 can induce the secretion of the pro-inflammatory cytokine intereukin-1β (IL-1β) in immune cells within and out of the nervous system. Known interaction partners of Aβ1-42 are α7 nicotinic acetylcholine receptors (nAChRs). The physiological functions of Aβ1-42 are, however, not fully understood. Recently, we identified a cholinergic mechanism that controls monocytic release of IL-1β by canonical and non-canonical agonists of nAChRs containing subunits α7, α9, and/or α10. Here, we tested the hypothesis that Aβ1-42 modulates this inhibitory cholinergic mechanism. Lipopolysaccharide-primed monocytic U937 cells and human mononuclear leukocytes were stimulated with the P2X7 receptor agonist 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate triethylammonium salt (BzATP) in the presence or absence of nAChR agonists and Aβ1-42. IL-1β concentrations were measured in the supernatant. Aβ1-42 dose-dependently (IC50 = 2.54 µM) reversed the inhibitory effect of canonical and non-canonical nicotinic agonists on BzATP-mediated IL-1β-release by monocytic cells, whereas reverse Aβ42-1 was ineffective. In conclusion, we discovered a novel pro-inflammatory Aβ1-42 function that enables monocytic IL-1β release in the presence of nAChR agonists. These findings provide evidence for a novel physiological function of Aβ1-42 in the context of sterile systemic inflammation

    Alpha-1 Antitrypsin inhibits ATP-mediated release of Interleukin-1β via CD36 and Nicotinic Acetylcholine receptors

    Get PDF
    While interleukin (IL)-1β is a potent pro-inflammatory cytokine involved in host defense, high levels can cause life-threatening sterile inflammation including systemic inflammatory response syndrome. Hence, the control of IL-1β secretion is of outstanding biomedical importance. In response to a first inflammatory stimulus such as lipopolysaccharide, pro-IL-1β is synthesized as a cytoplasmic inactive pro-form. Extracellular ATP originating from injured cells is a prototypical second signal for inflammasome-dependent maturation and release of IL-1β. The human anti-protease alpha-1 antitrypsin (AAT) and IL-1β regulate each other via mechanisms that are only partially understood. Here, we demonstrate that physiological concentrations of AAT efficiently inhibit ATP-induced release of IL-1β from primary human blood mononuclear cells, monocytic U937 cells, and rat lung tissue, whereas ATP-independent IL-1β release is not impaired. Both, native and oxidized AAT are active, suggesting that the inhibition of IL-1β release is independent of the anti-elastase activity of AAT. Signaling of AAT in monocytic cells involves the lipid scavenger receptor CD36, calcium-independent phospholipase A2β, and the release of a small soluble mediator. This mediator leads to the activation of nicotinic acetylcholine receptors, which efficiently inhibit ATP-induced P2X7 receptor activation and inflammasome assembly. We suggest that AAT controls ATP-induced IL-1β release from human mononuclear blood cells by a novel triple-membrane-passing signaling pathway. This pathway may have clinical implications for the prevention of sterile pulmonary and systemic inflammation
    corecore