5 research outputs found

    Improved mini-Tn 7 Delivery Plasmids for Fluorescent Labeling of

    Get PDF
    Fluorescently labeled bacterial cells have become indispensable for many aspects of microbiological research, including studies on biofilm formation as an important virulence factor of various opportunistic bacteria of environmental origin such as . Using a Tn 7 -based genomic integration system, we report the construction of improved mini-Tn 7 delivery plasmids for labeling of with sfGFP, mCherry, tdTomato and mKate2 by expressing their codon-optimized genes from a strong, constitutive promoter and an optimized ribosomal binding site. Transposition of the mini-Tn 7 transposons into single neutral sites located on average 25 nucleotides downstream of the 3'-end of the conserved glmS gene of different wild-type strains did not have any adverse effects on the fitness of their fluorescently labeled derivatives. This was demonstrated by comparative analyses of growth, resistance profiles against 18 antibiotics of different classes, the ability to form biofilms on abiotic and biotic surfaces, also independent of the fluorescent protein expressed, and virulence in . It is also shown that the mini-Tn 7 elements remained stably integrated in the genome of over a prolonged period of time in the absence of antibiotic selection pressure. Overall, we provide evidence that the new improved mini-Tn 7 delivery plasmids are valuable tools for generating fluorescently labeled strains that are indistinguishable in their properties from their parental wild-type strains. IMPORTANCE The bacterium is an important opportunistic nosocomial pathogen that can cause bacteremia and pneumonia in immunocompromised patients with a high rate of mortality. It is now considered as a clinically relevant and notorious pathogen in cystic fibrosis patients but has also been isolated from lung specimen of healthy donors. The high intrinsic resistance to a wide range of antibiotics complicates treatment and most likely contributes to the increasing incidence of infections worldwide. One important virulence-related trait of is the ability to form biofilms on any surface, which may result in the development of increased transient phenotypic resistance to antimicrobials. The significance of our work is to provide a mini-Tn 7 -based labeling system for to study the mechanisms of biofilm formation or host-pathogen interactions with live bacteria under non-destructive conditions

    Phenotypic and transcriptomic analyses of seven clinical Stenotrophomonas maltophilia isolates identify a small set of shared and commonly regulated genes involved in the biofilm lifestyle

    Get PDF
    Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings. IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms

    The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia

    Get PDF
    Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals
    corecore