39 research outputs found

    Preferential helping to relatives: A potential mechanism responsible for lower yield of crop variety mixtures?

    No full text
    International audienceVariety mixtures, the cultivation of different genotypes within a field, have been proposed as a way to increase within‐crop diversity, allowing the development of more sustainable agricultural systems with reduced environmental costs. Although mixtures have often been shown to over‐yield the average of component varieties in pure stands, decreased yields in mixtures have also been documented. Kin selection may explain such pattern, whenever plants direct helping behaviors preferentially toward relatives and thus experience stronger competition when grown with less related neighbors, lowering seed production of mixtures. Using varieties of durum wheat originating from traditional Moroccan agrosystems, we designed a greenhouse experiment to address whether plants reduced competition for light by limiting stem elongation when growing with kin, and whether such phenotypic response resulted in higher yield of kin groups. Seeds were sown in groups of siblings and non‐kin, each group containing a focal plant surrounded by four neighbors. At the group level, mean plant height and yield did not depend upon relatedness among competing plants. At the individual level, plant height was not affected by genetic relatedness to neighbors, after accounting for direct genetic effects that might induce among‐genotype differences in the ability to capture resources that do not depend on relatedness. Moreover, in contrast to our predictions, shorter plants had lower inclusive fitness. Phenotypic plasticity in height was very limited in response to neighbor genotypes. This suggests that human selection in crops may have attenuated shade‐avoidance responses to competition for light. Future research on preferential helping to relatives in crops might thus target social traits that drive competition for other resources than light. Overall, our study illustrates the relevance of tackling agricultural issues from an evolutionary standpoint, and calls for extending such approaches to a larger set of crop species

    Plant trait relationships are maintained within a major crop species: lack of artificial selection signal and potential for improved agronomic performance

    Get PDF
    International audienceThe exploration of phenotypic spaces of large sets of plant species has considerably increased our understanding of diversification processes in the plant kingdom. Nevertheless, such advances have predominantly relied on interspecific comparisons that hold several limitations. Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgidum spp. durum , characterized by variable degrees of artificial selection. We measured aboveground and belowground traits as well as agronomic traits to explore the functional and agronomic trait spaces and to investigate trait‐to‐agronomic performance relationships. We showed that the wheat functional trait space shared commonalities with global cross‐species spaces previously described, with two main axes of variation: a root foraging axis and a slow–fast trade‐off axis. Moreover, we detected a clear signature of artificial selection on the variation of agronomic traits, unlike functional traits. Interestingly, we identified alternative phenotypic combinations that can optimize crop performance. Our work brings insightful knowledge about the structure of phenotypic spaces of domesticated plants and the maintenance of phenotypic trade‐offs in response to artificial selection, with implications for trade‐off‐free and multi‐criteria selection in plant breeding

    Diversity matters in wheat mixtures: A genomic survey of the impact of genetic diversity on the performance of 12 way durum wheat mixtures grown in two contrasted and controlled environments

    No full text
    International audienceIn ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp. durum Thell.) inbred lines, under two contrasting environmental conditions for water availability. Using dense genotyping, we imputed allelic frequencies and a genetic diversity index on more than 96000 loci for each mixture. We then analyzed the effect of genetic diversity on agronomic performance using a genome-wide approach. We explored the stress gradient hypothesis, which proposes that the greater the unfavourable conditions, the more beneficial the effect of diversity on mixture performance. We found that diversity on average had a negative effect on yield and its components while it was beneficial on grain weight. There was little support for the stress gradient theory. We discuss how to use genomic data to improve the assembly of varietal mixtures

    Diversity matters in wheat mixtures: A genomic survey of the impact of genetic diversity on the performance of 12 way durum wheat mixtures grown in two contrasted and controlled environments

    No full text
    In ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp. durum Thell.) inbred lines, under two contrasting environmental conditions for water availability. Using dense genotyping, we imputed allelic frequencies and a genetic diversity index on more than 96000 loci for each mixture. We then analyzed the effect of genetic diversity on agronomic performance using a genome-wide approach. We explored the stress gradient hypothesis, which proposes that the greater the unfavourable conditions, the more beneficial the effect of diversity on mixture performance. We found that diversity on average had a negative effect on yield and its components while it was beneficial on grain weight. There was little support for the stress gradient theory. We discuss how to use genomic data to improve the assembly of varietal mixtures
    corecore