1,512 research outputs found

    Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle

    Get PDF
    The host hormone melatonin increases cytoplasmic Ca2+ concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466–468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively)

    In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines

    Get PDF
    A large number of classic antineoplastic agents are derived from plants. Euphorbia tirucalli L. (Euphorbiaceae) is a subtropical and tropical plant, used in Brazilian folk medicine against many diseases, including cancer, yet little is known about its true anticancer properties. The present study evaluated the antitumor effect of the tetracyclic triterpene alcohol, euphol, the main constituent of E. tirucalli in a panel of 73 human cancer lines from 15 tumor types. The biological effect of euphol in pancreatic cells was also assessed. The combination index was further used to explore euphol interactions with standard drugs. Euphol showed a cytotoxicity effect against several cancer cell lines (IC50 range, 1.41-38.89 ”M), particularly in esophageal squamous cell (11.08 ”M) and pancreatic carcinoma cells (6.84 ”M), followed by prostate, melanoma, and colon cancer. Cytotoxicity effects were seen in all cancer cell lines, with more than half deemed highly sensitive. Euphol inhibited proliferation, motility and colony formation in pancreatic cancer cells. Importantly, euphol exhibited synergistic interactions with gemcitabine and paclitaxel in pancreatic and esophageal cell lines, respectively. To the best of our knowledge, this study constitutes the largest in vitro screening of euphol efficacy on cancer cell lines and revealed its in vitro anti-cancer properties, particularly in pancreatic and esophageal cell lines, suggesting that euphol, either as a single agent or in combination with conventional chemotherapy, is a potential anti-cancer drug.AmazÎnia Fitomedicamentos Ltda. (grant no. FITO 05/2012) and Barretos Cancer Hospital, all from Brazilinfo:eu-repo/semantics/publishedVersio

    The role of the anion in imidazolium-based ionic liquids for fuel and terpenes processing

    Get PDF
    Abstract: The potentialities of methylimidazolium-based ionic liquids (ILs) as solvents were evaluated for some relevant separation problems—terpene fractionation and fuel processing—studying selectivities, capacities, and solvent performance indices. The activity coefficients at infinite dilution of the solute (1) in the IL (3), g„ 13, of 52 organic solutes were measured by inverse gas chromatography over a temperature range of 333.2–453.2 K. The selected ILs are 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], and the equimolar mixture of [C4mim][PF6] and 1-butyl-3-methylimidazolium chloride, [C4mim]Cl. Generally, low polar solutes follow g„ 1,[C4mim]Cl > g„ 1,[C4mim][PF6]+[C4mim]Cl > g„ 1,[C4mim][PF6] while the opposite behavior is observed for alcohols and water. For citrus essential oil deterpenation, the results suggest that cations with long alkyl chains, such as [C12mim]+, promote capacity, while selectivity depends on the solute polarity. Promising results were obtained for the separation of several model mixtures relevant to fuel industries using the equimolar mixture of [C4mim][PF6] and [C4mim]Cl. This work demonstrates the importance of tailoring the polarity of the solvents, suggesting the use of ILs with mixed anions as alternative solvents for the removal of aliphatic hydrocarbons and contaminants from fuels.This research was funded by the European Regional Development Fund (ERDF) through the Regional Operational Program North 2020, within the scope of Project GreenHealth—Digital strategies in biological assets to improve well-being and promote green health, Norte-01-0145-FEDER- 000042, to which A. Zambom is thankful for her grant. S. M. Vilas-Boas thanks FCT and the European Social Fund (ESF) for his Ph.D. grant (SFRH/BD/138149/2018 and COVID/BD/152936/2022). L.P.Silva acknowledges FCT for her Ph.D. grant (SFRH/BD/135976/2018).info:eu-repo/semantics/publishedVersio

    The P450 oxidoreductase, RedA, controls development beyond the mound stage in Dictyostelium discoideum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NADPH-cytochrome-P450 oxidoreductase (CPR) is a ubiquitous enzyme that belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated that absence of this enzyme causes developmental defects both in mouse and insect.</p> <p>Results</p> <p>Annotation of the sequenced genome of <it>D. discoideum </it>revealed the presence of three genes (<it>redA</it>, <it>redB </it>and <it>redC</it>) that encode putative members of the diflavin oxidoreductase protein family. <it>redA </it>transcripts are present during growth and early development but then decline, reaching undetectable levels after the mound stage. <it>redB </it>transcripts are present in the same levels during growth and development while <it>redC </it>expression was detected only in vegetative growing cells. We isolated a mutant strain of <it>Dictyostelium discoideum </it>following restriction enzyme-mediated integration (REMI) mutagenesis in which <it>redA </it>was disrupted. This mutant develops only to the mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling.</p> <p>Conclusion</p> <p>The developmental arrest due to disruption of <it>redA </it>implicates CPR in the metabolism of compounds that control cell differentiation.</p

    WNK2 inhibits autophagic flux in human glioblastoma cell line

    Get PDF
    The following are available online at http://www.mdpi.com/2073-4409/9/2/485/s1, Figure S1: Validation of WNK2 overexpression by RT-PCR.Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, its role in autophagy process is poorly explored. The WNK2-methylated human glioblastoma cell line A172 WT (wild type) was compared to transfected clones A172 EV (empty vector), and A172 WNK2 (WNK2 overexpression) for the evaluation of autophagy using an inhibitor (bafilomycin A1—baf A1) and an inducer (everolimus) of autophagic flux. Western blot and immunofluorescence approaches were used to monitor autophagic markers, LC3A/B and SQSTM1/p62. A172 WNK2 cells presented a significant decrease in LC3B and p62 protein levels, and in LC3A/B ratio when compared with control cells, after treatment with baf A1 + everolimus, suggesting that WNK2 overexpression inhibits the autophagic flux in gliomas. The mTOR pathway was also evaluated under the same conditions, and the observed results suggest that the inhibition of autophagy mediated by WNK2 occurs through a mTOR-independent pathway. In conclusion, the evaluation of the autophagic process demonstrated that WNK2 inhibits the autophagic flux in glioblastoma cell line.This project was supported by the Barretos Cancer Hospital Internal Research Funds (PAIP) to Rui Manuel Reis and by the Public Ministry of Labor Campinas (Research, Prevention, and Education of Occupational Cancer Project), Campinas, Brazil. Ana Laura Vieira Alves is the recipient of a FAPESP master fellowship (2016/18907-0)
    • 

    corecore