14 research outputs found

    Sandfly fauna (Diptera: Psychodidae) in an urban area, Central-West of Brazil

    Get PDF
    Biological and ecological relations among vectors and their pathogens are important to understand the epidemiology of vector-borne diseases. Camapuã is an endemic area for visceral and tegumentary leishmaniasis. The aim of this study was to characterize the sandfly fauna present in Camapuã , MS, Brazil. Sand flies were collected every fortnight from May 2014 to April 2015 using automatic light traps in the domicile and peridomicile of twelve neighborhoods and forest. The collected specimens were identified based on morphology according to the valid identification keys. In total, 2005 sandflies of five genera and nine species were collected. Nyssomyia whitmani and Lutzomyia cruzi were the most abundant species. Males were more abundant, with a male-to-female ratio of 2.14. The highest diversity was observed in peripheral neighborhood, with abundant plant cover. The peridomicile presented greater abundance of sandflies, with the predominance of Ny. whitmani . No significant correlation between the absolute frequencies of the most abundant species and the precipitation variable was observed; however, there was a predominance of Lu. cruzi in the rainy season. We observed a high frequency of sandflies in urban area, especially vector species. The presence of Nyssomyia whitmani and Lutzomyia cruzi indicate the necessity for health surveillance in the municipality. Additional method of collection such as sticky trap is also recommended for appropriate faunestic study

    Spatiotemporal changes in exposition risk to leishmaniases vector in residences within a fishing tourism area of Pantanal wetland.

    No full text
    Miranda Municipality of Mato Grosso do Sul, borders the Pantanal wetland, a famous fishing destination visited by tourists from all over the world, and is a location where visceral leishmaniasis has been reported. To assess the risk of Leishmania infantum transmission, we studied the sandfly community, focusing on known vector and parasite presence. We conducted light trap collections twice per month at nine sites within the city (including two forested areas) for one year. We collected a total of 12,727 sand flies, 10,891 males and 1,836 females belonging to 11 species: Brumptomyia avellari, Evandromyia aldafalcaoae, Ev. evandroi, Ev. lenti, Ev. sallesi, Ev. walkeri, Lu. longipalpis, Nyssomyia whitmani, Psathyromyia bigeniculata, Pa. hermanlenti and Pa. punctigeniculata. Lutzomyia longipalpis, the proven vector of Leishmania infantum, was captured each month, and was the most abundant species observed, accounting for more than 99% of sand flies captured in most sites, especially where chicken coops were present. Evidence of Leishmania infantum infection was detected in 0.40% of Lu. longipalpis tested. We developed a generalized mixed multilevel model for Lu. longipalpis, that includes within-year seasonality, location of capture (indoors vs. outdoors), vector abundance, and sex ratio. The VL vector was abundant both inside and outside houses. Large numbers of Lu. longipalpis were observed in outdoor sites where domestic animals were present but were absent from forest sites. Our findings suggest high vector populations and Le. infantum presence in a city where tourists could be exposed to visceral leishmaniasis, with significant implications for more surveillance and control activities

    Macrogeographic genetic structure of Lutzomyia longipalpis complex populations using Next Generation Sequencing.

    No full text
    Lutzomyia longipalpis is the main vector of Leishmania infantum, the causative agent of visceral leishmaniasis in the Neotropical realm. Its taxonomic status has been widely discussed once it encompasses a complex of species. The knowledge about the genetic structure of insect vector populations helps the elucidation of components and interactions of the disease ecoepidemiology. Thus, the objective of this study was to genotypically analyze populations of the Lu. longipalpis complex from a macrogeographic perspective using Next Generation Sequencing. Polymorphism analysis of three molecular markers was used to access the levels of population genetic structure among nine different populations of sand flies. Illumina Amplicon Sequencing Protocol® was used to identify possible polymorphic sites. The library was sequenced on paired-end Illumina MiSeq platform. Significant macrogeographical population differentiation was observed among Lu. longipalpis populations via PCA and DAPC analyses. Our results revealed that populations of Lu. longipalpis from the nine municipalities were grouped into three clusters. In addition, it was observed that the levels of Lu. longipalpis population structure could be associated with distance isolation. This new sequencing method allowed us to study different molecular markers after a single sequencing run, and to evaluate population and inter-species differences on a macrogeographic scale
    corecore