9 research outputs found

    Is vegetation collapse on Borneo already in progress?

    Get PDF
    Vegetation and tropical forests in particular have a central role in mitigating the effects of increasing levels of atmospheric CO2. Photosynthesis is the fundamental process during which CO2is taken up by plants and fixed into carbohydrates. The effect of temperature on the rate of photosynthesis in different plant species is directly related to degree-days (D-D) as well as the leaf area index (LAI). Throughout the dry season, the reduced net primary productivity is tightly correlated with increasing D-D, while the reduction in soil moisture leads to progressive canopy thinning, indicated by decreasing LAI. Forest degradation exacerbated by soil erosion and depletion of nutrients in response to high rainfall intensities during the rainy season further disturbs the ecological balance of the entire ecosystem, destabilising it beyond its natural resilience. Given this fact, ground-based evidence and remote sensing-based findings, we propose a climatically induced cascade of events leading to a gradual alteration of the tropical forest ecosystems on Borneo with a diminishing ability to absorb CO2and release O2. Such a feedback loop, which is primarily triggered by increases in temperature, has potentially dangerous outcome for tropical ecosystems and has already been observed in the north-western state of Brunei Darussalam. The island of Borneo as a whole seems to have reached a level of forest degradation that is beyond a point of no return. In the worst-case scenario, the next niche of stability may be a destruction of tropical forests and the loss of a major proportion of Earth’s biodiversity. Our aim is to stimulate further research on such occurrences and inspire the implementation of future preventative measures

    Interpreting bryophyte stable carbon isotope composition: Plants as temporal and spatial climate recorders

    Get PDF
    Bryophytes are unable to control tissue water content although physiological adaptations allow growth in a wide range of habitats. Carbon isotope signals in two mosses (Syntrichia ruralis and Chorisodontium aciphyllum) and two liverworts (Conocephalum conicum and Marchantia polymorpha), whether instantaneous (real-time, Δ13C), or organic matter (as δ13COM), provide an assimilation-weighted summary of bryophyte environmental adaptations. In mosses, δ13COM is within the measured range of Δ13C values, which suggests that other proxies, such as compound specific organic signals will be representative of historical photosynthetic and growth conditions. The liverworts were photosynthetically active over a wider range of relative water contents (RWC) than the mosses. There was a consistent 5‰ offset between Δ13C values in C. conicum and M. polymorpha, suggestive of greater diffusion limitation in the latter. Analysis of a C. aciphyllum moss-peat core showed the isotopic composition over the past 200 years reflects recent anthropogenic CO2 emissions. Once corrected for source-CO2 inputs, the seasonally integrated ∆13COM between 1350 and 2000 AD varied by 1.5‰ compared with potential range of the 12‰ measured experimentally, demonstrating the relatively narrow range of conditions under which the majority of net assimilation takes place. Carbon isotope discrimination also varies spatially, with a 4‰ shift in epiphytic bryophyte organic matter found between lowland Amazonia and upper montane tropical cloud forest in the Peruvian Andes; associated with increased diffusion limitation

    High nitrogen-fixing rates associated with ground-covering mosses in a tropical mountain cloud forest will decrease drastically in a future climate

    Get PDF
    Tropical mountain cloud forests (TMCF) harbour a high bryophyte (mosses and liverworts) biomass and diversity. Furthermore, the high air humidity makes these forests well suited for bryophyte-associated nitrogen (N2) fixation by cyanobacteria, providing a potentially important source of N input to the ecosystem. However, few studies have assessed bryophyte-associated N input in these ecosystems, and these have focused on epiphytic bryophytes, whereas abundant ground-covering bryophytes have not been included. In this study, we quantified N2 fixation rates associated with bryophytes, focusing on ground-covering mosses in a neotropical mountain cloud forest. Furthermore, we identified the effects of climate change (higher temperature 10 vs. 20° and lower bryophyte moisture level 50% vs. 100%) on N2 fixation across bryophyte species and groups (mosses and liverworts). Nitrogen fixation rates associated with ground-covering moss species were up to 2 kg N ha−1 year−1, which is comparable to other N inputs (e.g. N deposition) in tropical cloud forests. Furthermore, changes in temperature showed little effect on N2 fixation, but low moisture levels significantly suppressed N2 fixation activity. We found low N2 fixation activity associated with the investigated liverworts. Our results demonstrate the importance of ground-covering, moss-associated N2 fixation as a N source in tropical cloud forests and suggest that predicted future declines in precipitation in these systems will reduce N inputs from bryophyte-associated cyanobacteria

    Do Nitrogen and Phosphorus Additions Affect Nitrogen Fixation Associated with Tropical Mosses?

    No full text
    Tropical cloud forests are characterized by abundant and biodiverse mosses which grow epiphytically as well as on the ground. Nitrogen (N)-fixing cyanobacteria live in association with most mosses, and contribute greatly to the N pool via biological nitrogen fixation (BNF). However, the availability of nutrients, especially N and phosphorus (P), can influence BNF rates drastically. To evaluate the effects of increased N and P availability on BNF in mosses, we conducted a laboratory experiment where we added N and P, in isolation and combined, to three mosses (Campylopus sp., Dicranum sp. and Thuidium peruvianum) collected from a cloud forest in Peru. Our results show that N addition almost completely inhibited BNF within a day, whereas P addition caused variable results across moss species. Low N2 fixation rates were observed in Campylopus sp. across the experiment. BNF in Dicranum sp. was decreased by all nutrients, while P additions seemed to promote BNF in T. peruvianum. Hence, each of the three mosses contributes distinctively to the ecosystem N pool depending on nutrient availability. Moreover, increased N input will likely significantly decrease BNF associated with mosses also in tropical cloud forests, thereby limiting N input to these ecosystems via the moss-cyanobacteria pathway
    corecore