17 research outputs found

    The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa

    Get PDF
    The infections caused by Pseudomonas aeruginosa are life-threatening, due to high intrinsic antimicrobial resistance of this microorganism. The integrons and biofilm formation of P. aeruginosa have a significant role in antibiotic resistance. Therefore, this study aimed to evaluate antibiotic resistance pattern in Pseudomonas aeruginosa isolates with biofilm formation ability. This cross-sectional study from January 2017 to December 2017 was conducted on 78 isolates (58 clinical and 20 environmental) of P. aeruginosa recovered from the 547 samples (439 of clinical and 108 of environmental samples). The isolates were identified by phenotypic and genotypic tests. Kirby-Bauer disk diffusion method was used for susceptibility testing. The prevalence of class 1, 2 and 3 Integrons, rhlA, and lasB genes were determined using Polymerase Chain Reaction (PCR). Biofilm formation was determined using the microtiter plate method. Data analyzed using Stata 14 software and Chi-Square test. The most prevalent resistance was observed against Ticarcillin/Clavulanic Acid (55). Generally, 56.4 of isolates were producers of strong biofilm in both environmental and clinical isolates. The prevalence of strong biofilm producers in clinical isolates was more than environmental. A significant correlation was observed between Int1, Int2, and rhlA genes with biofilm formation capability (P = 0.02). Regarding >50 of both environmental and clinical isolates were producers of strong biofilm and because the source of clinical isolates may be from the environment, the necessary hygiene measurements should be taken. No significant correlation was observed between lasB gene with biofilm formation capability. © 2019 Elsevier Inc

    Molecular typing of Brucella species isolated from humans and animals using polymerase chain reaction-restriction fragment length polymorphism technique

    Get PDF
    Background: Brucellosis is a zoonotic disease that causes major economic and public health problems. It is one of the most important diseases in humans and domestic animals. Hence, the exact identification of Brucella spp. is important for strategies of treatment and control. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is one of the molecular techniques characterized by amplification of deoxyribonucleic acid (DNA) sequence and restriction enzyme digestion. Objectives: This study aimed at identifying genetic polymorphisms of omp2a genes among 90 Brucella isolated from humans and animals, using the PCR-RFLP method. Methods: Ninety Brucella spp. isolated from humans and animals in two different regions of Iran were used in this study. Biochemical tests and the Brucella omp2a (1100 bp) gene-PCR was used for identification of Brucella isolates. Polymerase Chain Reaction products were digested by restriction endonuclease enzyme pstI and gene sequencing analysis was carried out for molecular typing of Brucella strains. Therefore, genetic relatedness was revealed by a dendrogram. Results: Analysis of the 90 Brucella strains by biochemical tests, PCR, and PCR-RFLP methods with PstI enzyme and omp2a sequencing showed four unique RFLP Profiles (P1-P4). Seventy-nine (87.8) of the Brucella isolates belonged to B. melitensis strain 20236. From 30 animal isolates, nine (30) belonged to B. melitensis biovare1 and two (6.6) to B. abortus strain. According to the RFLP dendrogram, group 1 and 2 had higher genetic relatedness similarity. Conclusions: The results showed B. melitensis strain 20236 was the predominant strain among human and animal Brucella isolates. Likewise, according to dendrogram results, the PCR-RFLP technique was not able to separate human and animal species of B. melitensis from B. abortus. © 2018, Archives of Clinical Infectious Diseases

    Bacterial biofilm in colorectal cancer: What is the real mechanism of action?

    Get PDF
    Human colorectal cancer is the third most common cancer around the world. Colorectal cancer has various risk factors, but current works have bolded a significant activity for the microbiota of the human colon in the development of this disease. Bacterial biofilm has been mediated to non-malignant pathologies like inflammatory bowel disease but has not been fully documented in the setting of colorectal cancer. The investigation has currently found that bacterial biofilm is mediated to colon cancer in the human and linked to the location of human cancer, with almost all right-sided adenomas of colon cancers possessing bacterial biofilm, whilst left-sided cancer is rarely biofilm positive. The profound comprehension of the changes in colorectal cancer can provide interesting novel concepts for anticancer treatments. In this review, we will summarize and examine the new knowledge about the links between colorectal cancer and bacterial biofilm. © 202

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Sewage and sewage-contaminated environments are the most prominent sources to isolate phages against <em>Pseudomonas aeruginosa</em>.

    No full text
    BACKGROUND: P. aeruginosa is the primary source of hospital-acquired infections. Unfortunately, antibiotic resistance is growing to precariously high levels, making the infections by this pathogen life-threatening and hard to cure. One possible alternative to antibiotics is to use phages. However, the isolation of phages suitable for phage therapy- be lytic, be efficient, and have a broad host range -against some target bacteria has proven difficult. To identify the best places to look for these phages against P. aeruginosa we screened hospital sewages, soils, and rivers in two cities. RESULTS: We isolated eighteen different phages, determined their host range, infection property, and plaque morphology. We found that the sewage and sewage-contaminated environments are the most reliable sources for the isolation of Pseudomonas phages. In addition, phages isolated from hospital sewage showed the highest efficiency in lysing the bacteria used for host range determination. In contrast, phages from the river had larger plaque size and lysed bacteria with higher levels of antibiotic resistance. CONCLUSIONS: Our findings provided additional support for the importance of sewage as the source of phage isolation

    Improving the inhibitory effect of phages against <em>Pseudomonas aeruginosa</em> isolated from a burn patient using a combination of phages and antibiotics.

    No full text
    Antibiotic resistance causes around 700,000 deaths a year worldwide. Without immediate action, we are fast approaching a post-antibiotic era in which common infections can result in death. Pseudomonas aeruginosa is the leading cause of nosocomial infection and is also one of the three bacterial pathogens in the WHO list of priority bacteria for developing new antibiotics against. A viable alternative to antibiotics is to use phages, which are bacterial viruses. Yet, the isolation of phages that efficiently kill their target bacteria has proven difficult. Using a combination of phages and antibiotics might increase treatment efficacy and prevent the development of resistance against phages and/or antibiotics, as evidenced by previous studies. Here, in vitro populations of a Pseudomonas aeruginosa strain isolated from a burn patient were treated with a single phage, a mixture of two phages (used simultaneously and sequentially), and the combination of phages and antibiotics (at sub-minimum inhibitory concentration (MIC) and MIC levels). In addition, we tested the stability of these phages at different temperatures, pH values, and in two burn ointments. Our results show that the two-phages-one-antibiotic combination had the highest killing efficiency against the P. aeruginosa strain. The phages tested showed low stability at high temperatures, acidic pH values, and in the two ointments. This work provides additional support for the potential of using combinations of phage-antibiotic cocktails at sub-MIC levels for the treatment of multidrug-resistant P. aeruginosa infections

    Oncolytic effects of Hitchner B1 strain of newcastle disease virus against cervical cancer cell proliferation is mediated by the increased expression of cytochrome C, autophagy and apoptotic pathways

    No full text
    Newcastle disease virus (NDV) is a potential oncolytic virus for the cancer treatment due to its ability to replicate in tumor cells. The aim of this study was to evaluate the in vitro anticancer properties of Hitchner B1 (HB1) strain of NDV on TC-1 cell line and underlying molecular mechanisms. The cytolytic effects of oncolytic HB1 strain of NDV was determined by lactate dehydrogenase (LDH) release assay. Apoptosis, intracellular reactive oxygen species (ROS) levels, cleaved caspase-3 and autophagy were evaluated by flow cytometry. Cytochrome-C and survivin protein levels were distinguished by Enzyme-Linked Immunosorbent Assay (ELISA). Our results from LDH method showed that the viability of the TC-1 cell line following HB1 NDV infection was dose-dependent and decreased significantly with increasing the dose of HB1 NDV infection (MOIs: 5, 10, and 15). Other evaluations also revealed that HB1 strain of NDV potentially led to the ROS production, and apoptosis and autophagy induction in TC-1 cell line in a dose-dependent manner. The in vitro experiments also presented that NDV treatment significantly up-regulated the expression of cytochrome-C and down-regulated the expression of survivin, as detected by ELISA assay. Our results confirmed that the HB1 NDV could be introduced as a powerful candidate for the therapy of cervical cancer. However, further examinations are needed to explain the underlying mechanisms of the HB1 NDV against TC-1 cell line and cervical cancer
    corecore