14 research outputs found

    Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS4:An Earth Abundant Solar Absorber

    Get PDF
    The optoelectronic properties of crystalline BiPS4 have been described for the first time for solar energy conversion. Detailed structural analysis is extracted from XRD refinement of powders synthesized by the solid-state method. BiPS4 exhibits a rather unusual 3-dimensional orthorhombic structure with two distinctive Bi sites with octahedral coordination distorted by 6s2 lone pairs. High-resolution TEM imaging clearly shows the two Bi–Bi interatomic distances in close agreement with the XRD analysis. BiPS4 displays a complex Raman spectrum under near-resonant conditions which is rationalized by density functional perturbation theory. Hybrid-functional-DFT calculations show significant spin–orbit coupling effects in Bi 6p bands, not only affecting the band dispersion but also lowering the conduction band minimum by approximately 0.5 eV. The optical properties of BiPS4 powders are dominated by a direct transition at 1.72 eV, closely matching the calculated band gap. Electrochemical experiments revealed n-type conductivity with a flat band potential located at 0.16 V vs RHE. We also show a remarkable agreement between the position of the band edges estimated from first-principles calculations and electrochemical measurements. The time-resolved photoluminescence transient revealed a carrier lifetime of approximately 1 ns, manifesting as strong potential- and wavelength-dependent photocurrent responses. Finally, the nature of the structural defects responsible for the relatively short lifetime is briefly discussed

    TFG Promotes Organization of Transitional ER and Efficient Collagen Secretion

    Get PDF
    Collagen is the most abundant protein in the animal kingdom. It is of fundamental importance during development for cell differentiation and tissue morphogenesis as well as in pathological processes such as fibrosis and cancer cell migration. However, our understanding of the mechanisms of procollagen secretion remains limited. Here, we show that TFG organizes transitional ER (tER) and ER exit sites (ERESs) into larger structures. Depletion of TFG results in dispersion of tER elements that remain associated with individual ER-Golgi intermediate compartments (ERGICs) as largely functional ERESs. We show that TFG is not required for the transport and packaging of small soluble cargoes but is necessary for the export of procollagen from the ER. Our work therefore suggests a key relationship between the structure and function of ERESs and a central role for TFG in optimizing COPII assembly for procollagen export.Medical Research Council UK/MR/J000604/1Medical Research Council UK/MR/K018019/1Medical Research Council UK/MR/G080184

    Quantification of Extracellular DNA Network Abundance and Architecture within Streptococcus gordonii Biofilms Reveals Modulatory Factors

    Get PDF
    Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit

    Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension

    Get PDF
    Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension. </jats:p

    Excitation-energy-dependent molecular beacon detects early stage neurotoxic Aβ aggregates in the presence of cortical neurons

    Get PDF
    There is now crucial medical importance placed on understanding the role of early stage, subvisible protein aggregation, particularly in neurodegenerative disease. While there are strategies for detecting such aggregates in vitro, there is no approach at present that can detect these toxic species associated with cells and specific subcellular compartments. We have exploited excitation-energy-dependent fluorescence edge-shift of recombinant protein labeled with a molecular beacon, to provide a sensitive read out for the presence of subvisible protein aggregates. To demonstrate the potential utility of the approach, we examine the major peptide associated with the initiation of Alzheimer’s disease, amyloid β-protein (Aβ) at a patho-physiologically relevant concentration in mouse cortical neurons. Using our approach, we find preliminary evidence that subvisible Aβ aggregates are detected at specific subcellular regions and that neurons drive the formation of specific Aβ aggregate conformations. These findings therefore demonstrate the potential of a novel fluorescence-based approach for detecting and imaging protein aggregates in a cellular context, which can be used to sensitively probe the association of early stage toxic protein aggregates within subcellular compartments

    Decorating Self-Assembled Peptide Cages with Proteins

    Get PDF
    An ability to organize and encapsulate multiple active proteins into defined objects and spaces at the nanoscale has potential applications in biotechnology, nanotechnology, and synthetic biology. Previously, we have described the design, assembly, and characterization of peptide-based self-assembled cages (SAGEs). These ≈100 nm particles comprise thousands of copies of <i>de novo</i> designed peptide-based hubs that array into a hexagonal network and close to give caged structures. Here, we show that, when fused to the designed peptides, various natural proteins can be co-assembled into SAGE particles. We call these constructs pSAGE for protein-SAGE. These particles tolerate the incorporation of multiple copies of folded proteins fused to either the N or the C termini of the hubs, which modeling indicates form the external and internal surfaces of the particles, respectively. Up to 15% of the hubs can be functionalized without compromising the integrity of the pSAGEs. This corresponds to hundreds of copies giving mM local concentrations of protein in the particles. Moreover, and illustrating the modularity of the SAGE system, we show that multiple different proteins can be assembled simultaneously into the same particle. As the peptide–protein fusions are made <i>via</i> recombinant expression of synthetic genes, we envisage that pSAGE systems could be developed modularly to actively encapsulate or to present a wide variety of functional proteins, allowing them to be developed as nanoreactors through the immobilization of enzyme cascades or as vehicles for presenting whole antigenic proteins as synthetic vaccine platforms
    corecore