23 research outputs found

    Diacylglycerol kinase ζ regulates microbial recognition and host resistance to Toxoplasma gondii

    Get PDF
    Mammalian Toll-like receptors (TLRs) recognize microbial pathogen-associated molecular patterns and are critical for innate immunity against microbial infection. Diacylglycerol (DAG) kinases (DGKs) regulate the intracellular levels of two important second messengers involved in signaling from many surface receptors by converting DAG to phosphatidic acid (PA). We demonstrate that the ζ isoform of the DGK family (DGKζ) is expressed in macrophages (Mφ) and dendritic cells. DGKζ deficiency results in impaired interleukin (IL) 12 and tumor necrosis factor α production following TLR stimulation in vitro and in vivo, increased resistance to endotoxin shock, and enhanced susceptibility to Toxoplasma gondii infection. We further show that DGKζ negatively controls the phosphatidylinositol 3–kinase (PI3K)–Akt pathway and that inhibition of PI3K activity or treatment with PA can restore lipopolysaccharide-induced IL-12 production by DGKζ-deficient Mφ. Collectively, our data provide the first genetic evidence that an enzyme involved in DAG/PA metabolism plays an important role in innate immunity and indicate that DGKζ promotes TLR responses via a pathway involving inhibition of PI3K

    SOCS2-Induced Proteasome-Dependent TRAF6 Degradation: A Common Anti-Inflammatory Pathway for Control of Innate Immune Responses

    Get PDF
    Pattern recognition receptors and receptors for pro-inflammatory cytokines provide critical signals to drive the development of protective immunity to infection. Therefore, counter-regulatory pathways are required to ensure that overwhelming inflammation harm host tissues. Previously, we showed that lipoxins modulate immune response during infection, restraining inflammation during infectious diseases in an Aryl hydrocarbon receptor (AhR)/suppressors of cytokine signaling (SOCS)2-dependent-manner. Recently, Indoleamine-pyrrole 2,3- dioxygenase (IDO)-derived tryptophan metabolites, including L-kynurenine, were also shown to be involved in several counter-regulatory mechanisms. Herein, we addressed whether the intracellular molecular events induced by lipoxins mediating control of innate immune signaling are part of a common regulatory pathway also shared by L-kynurenine exposure. We demonstrate that Tumor necrosis factor receptor-associated factor (TRAF)6 – member of a family of adapter molecules that couple the TNF receptor and interleukin-1 receptor/Toll-like receptor families to intracellular signaling events essential for the development of immune responses – is targeted by both lipoxins and L-kynurenine via an AhR/SOCS2-dependent pathway. Furthermore, we show that LXA4- and L-kynurenine-induced AhR activation, its subsequent nuclear translocation, leading SOCS2 expression and TRAF6 Lys47-linked poly-ubiquitination and proteosome-mediated degradation of the adapter proteins. The in vitro consequences of such molecular interactions included inhibition of TLR- and cytokine receptor-driven signal transduction and cytokine production. Subsequently, in vivo proteosome inhibition led to unresponsiveness to lipoxins, as well as to uncontrolled pro-inflammatory reactions and elevated mortality during toxoplasmosis. In summary, our results establish proteasome degradation of TRAF6 as a key molecular target for the anti-inflammatory pathway triggered by lipoxins and L-kynurenine, critical counter-regulatory mediators in the innate and adaptive immune systems

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Back to the future in Chagas disease: from animal models to patient cohort studies, progress in immunopathogenesis research

    Full text link

    Improved multilineage human hematopoietic reconstitution and function in NSGS mice.

    No full text
    Genetic manipulation of NOD/SCID (NS) mice has yielded numerous sub-strains with specific traits useful for the study of human hematopoietic xenografts, each with unique characteristics. Here, we have compared the engraftment and output of umbilical cord blood (UCB) CD34+ cells in four immune-deficient strains: NS, NS with additional IL2RG knockout (NSG), NS with transgenic expression of human myeloid promoting cytokines SCF, GM-CSF, and IL-3 (NSS), and NS with both IL2RG knockout and transgenic cytokine expression (NSGS). Overall engraftment of human hematopoietic cells was highest in the IL2RG knockout strains (NSG and NSGS), while myeloid cell output was notably enhanced in the two strains with transgenic cytokine expression (NSS and NSGS). In further comparisons of NSG and NSGS mice, several additional differences were noted. NSGS mice were found to have a more rapid reconstitution of T cells, improved B cell differentiation, increased levels of NK cells, reduced platelets, and reduced maintenance of primitive CD34+ cells in the bone marrow. NSGS were superior hosts for secondary engraftment and both strains were equally suitable for experiments of graft versus host disease. Increased levels of human cytokines as well as human IgG and IgM were detected in the serum of humanized NSGS mice. Furthermore, immunization of humanized NSGS mice provided evidence of a functional response to repeated antigen exposure, implying a more complete hematopoietic graft was generated in these mice. These results highlight the important role that myeloid cells and myeloid-supportive cytokines play in the formation of a more functional xenograft immune system in humanized mice
    corecore