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CHAPTER 2

Experimental Models for the Analysis of
IL-10 Function
Carl G. Feng, Julio Aliberti, Karl F. Hoffmann, Dragana Jankovic, Marika
C. Kullberg, Alan Sher and Thomas A. Wynn

Abstract

This review focuses on the regulatory functions of IL-10 in the response to parasitic and
bacterial infection revealed through knockout, cytokine/receptor blocking, and
transgenic mouse studies. The various mechanisms that control the production and

activity of IL-10 are also discussed. Studies performed over the past few years illustrate a com-
plex and pleiotropic nature for IL-10 in host immunity. The fact that nearly every cell in the
body can respond to IL-10 and multiple cells produce the cytokine likely explains this multi-
faceted activity. Studies conducted in experimental infectious and inflammatory diseases mod-
els have been particularly useful in defining the various regulatory activities of IL-10. Although
these studies have identified many common themes for IL-10 in host immunity, they also
nicely illustrate how IL-10 fine-tunes the response to individual pathogens and prevents in-
flammation.

Introduction
CD4+ T helper (Th) cells can be divided into three major subsets, Type-1, Type-2 and Th3/

T regulatory (Treg), based upon the specific cytokines produced and the functional activities
exhibited by each cell type. Type-1 Th cells produce interferon-γ (IFN-γ) and lymphotoxin
(LT), which promote macrophage activation and the generation of cell-mediated immunity.
Type-2 Th cells produce a variety of cytokines including IL-4, IL-5, and IL-13, and provide
help for the maturation of B cells to immunoglobulin-secreting cells, thereby activating hu-
moral defense mechanisms. In contrast to Th1 and Th2 cells, however, T regulatory cells rep-
resent a unique and more heterogeneous population, which can express a variety of immune
suppressive factors including CTLA-4, TGF-β, and/or IL-10.

Central to the concept of T helper subset generation is the tendency for an immune re-
sponse to become polarized. Thus, a Type-1 or Type-2 cytokine-producing profile will often
dominate quickly during an immune response by preferentially amplifying one Th subset while
down regulating the opposing response. This polarized response appears to be critical for host
defense against many pathogenic organisms. Resistance to intracellular pathogens often re-
quires a predominantly Type-1 response, while Type-2 responses are typically needed to fight
extracellular parasites. A primary goal of immunological research over the past decade has been
to understand the various mechanisms that influence the polarization of the immune response
following infection and to exploit those mechanisms in vaccine design. Whereas a polarized
response is often required to control infections, there is also a need to balance the response. The
various effector molecules, particularly those associated with the Th1 pathway, are nonspecific
in their action and can be detrimental if produced for too long, in excess, or in the wrong
location. The potentially harmful molecules include nitric oxide (NO), reactive oxygen inter-
mediates (ROI), IL-1, IFN-γ, and TNF, and these factors often operate in a synergistic fashion.
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Therefore, it is important to produce a sufficiently potent type 1 response to provide efficient
protection from infection, while at the same time producing a regulatory type 2 or immuno-
suppressive Treg cell response to prevent the protective response from causing damage to host
tissues. Conversely, excessive Th2 response must also be dampened to prevent acute anaphylac-
tic inflammation. The sections that follow illustrate how IL-10 regulates Th1 and Th2 re-
sponse to infection.

IL-10 and Th1/Th2 Effector Choice
IL-10 was initially characterized as a Th2-specific cytokine that inhibits IFN-γ secretion by

Th1 cells 1. Because IL-10 can also be produced by activated antigen presenting cells (APC)
(macrophages, dendritic cells (DC) and B lymphocytes 2-4) it was regarded as a candidate factor
that could positively influence the development of Th2 cells and negatively regulate differen-
tiation of Th1 cells. However, experimental data have failed to support this simplistic view of
IL-10’s effect on Th1/T2 polarization. As anticipated, when primed with model antigens (Ag)
or pathogens known to induce Th1-type responses, IL-10-/- animals display highly augmented
immune responses frequently associated with detrimental Th1-mediated pathology. For ex-
ample, IL-10-/- mice infected with Toxoplasma gondii, 5 Plasmodium chaubudi,6 or certain strains
of Trypanozoma cruzi, 7 have greatly elevated levels of IFN-γ, IL-12 and TNF-α and reduced
parasitemia, but substantially increased risk of death from a toxic shock-like syndrome com-
pared to WT (WT) controls. Unexpectedly, however, IL-10-/- mice also display enhanced Th2
responses when either challenged with allergens or exposed to Th2-type pathogens. 8-10 To-
gether these findings show that IL-10 acts as a general negative regulator of CD4-dependent
immune responses rather than a polarizing cytokine that influences Th1/Th2 commitment.

The inhibitory effect of IL-10 stems from its ability to down-regulate antigen-presenting
functions of both macrophages and DC, the primary sources of Ag/MHC complexes during T
cell priming. 11,12 The indirect influence of IL-10 on Th cells has been further supported by the
analysis of IL-10R expression. IL-10R is expressed by most hematopoietic cells.13 However,
while its expression is down-regulated on activated CD4+ T lymphocytes, 14 activation of mono-
cytes is associated with an increase in IL-10R levels, 15 providing the molecular basis for the
IL-10 responsiveness of the latter but not the former cell population.

In the context of Th effector choice, an important aspect of IL-10 effects on APC is its
ability to inhibit not only the expression of MHC class II and costimulatory molecules but also
the secretion of cytokines and chemokines.12,16 Although the latter effect of IL-10 is not selec-
tive and affects most of the soluble mediators produced by activated macrophages and DC, its
primary consequence is down-regulation of the Th1 development, because many of the
monokines (e.g., IL-12, IL-18, IL-23 and IL-27) are IFN-γ inducible cytokines required for
optimal Th1 differentiation.17 For the same reason, IL-10-treated macrophages or DC appear
to be promoting Th2 development. 18 In contrast to this differential effect on Th1/Th2 differ-
entiation, the accumulation of mature Th1 and Th2 effectors at the site of inflammation can
be equally affected by IL-10 since it down-regulates the production of both CC and CXC
chemokines. 19,20 In addition to inhibiting the production of cytokines and chemokines, IL-10
also enhances the expression of their natural antagonists by increasing the expression of either
decoy (e.g., IL-1RA and chemokine receptors) 21,22 or soluble (e.g., p55 and p75 TNFR) re-
ceptors 23,24 that in turn potentiate IL-10’s down-modulatory effects on APC functions.

Different IL-10-producing DC populations (e.g., from Peyer’s patches 25 and liver 26) have
been associated with the development of Th2 responses. Recently, these observations have been
extended by the findings that IL-10 is required for optimal development of Th2 cells by the
CD8-CD11c+ subset of splenic DC. 27 However, since IL-10 may selectively induce apoptosis
of CD8α+ CD11c+ cells, 27 this Th2 priming by IL-10 appears to be a result of a loss of
IL-12-producing DC and a subsequent lack of Th1 differentiation. In addition, while the
particular DC subsets were not analyzed, naïve and Trichinella spiralis-infected IL-10 knockout
(KO) mice display higher number of CD11c+ DC in mesenteric lymph nodes when compared
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to WT animals.28 Autocrine IL-10 has been shown to prevent spontaneous maturation of
human DC in vitro and to limit LPS and CD40-induced maturation.29

While initially specifically associated with Th2 cells, the expression of IL-10 is now found
in other Th subsets as well. When cultured in the presence of IL-10, murine bone marrow-derived
DC promote development of IL-10+ CD4+ Treg lymphocytes. 30 Moreover, similar to human
Th1 cells, 31 murine Th1 lymphocytes may also coexpress IL-10. For example, “classical” mu-
rine Th1 immune responses following infection with different intracellular pathogens (e.g.,
Brucella abortus, Borrelia burgdorferi, Leishmania major, T. gondii) include not only IFN-γ+

CD4+ cells but also “nonclassical” Th1 lymphocytes that concomitantly produce IFN-γ and
IL-10 32-35

Thus, although the effect of IL-10 on Th1/Th2 effector choice is indirect and very complex
(Fig. 1), IL-10 and IL-10R still represent attractive therapeutic targets for the manipulation of
APC function aimed at both promoting or/and suppressing development of different types of
CD4-dependent immune responses.36,37

IL-10 in Schistosome Infection
Like most host/helminth relationships, schistosome worms and their definitive hosts have

coevolved survival strategies that maximize the transmission of parasite gametes (enclosed in
the developing egg) and minimize the development of pathology in the host. While these
strategies work well for the vast majority of the 200 million people currently infected with this
pathogen, a small proportion of those affected will go on to develop life-threatening or severely
debilitating illnesses. 38 Although there are many confounding factors that influence the schis-
tosome/host equilibrium and clinical outcome, the induction of IL-10 during infection is a
vital and indispensable process that limits host pathology and facilitates long-term survival of
the parasite and host.

Figure 1.
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Schistosome cercariae release proteases as they penetrate the skin of their definitive host – a
process that leads to damage of surrounding tissues and the generation of robust innate im-
mune defense mechanisms. However, greater than 90% of infective stage cercariae survive this
process and ultimately reach the lungs. 39 Prostaglandins induced and released by the cercariae
40,41 are believed to be indirectly responsible for increased schistosome survival during this
critical period of infection via their effect on the host’s immune system. Specifically, one pros-
taglandin, prostaglandin E2 (PGE2) , up-regulates the production of keratinocyte-derived IL-10,
which in turn limits the induction of anti-parasite inflammatory reactions in the skin of experi-
mentally infected animals. 40 The production of IL-10 in skin seems to occur regardless of the
parasite species used during the infection 42 and is also observed in lymph nodes draining the
skin. 43 Moreover, studies in vaccinated IL-10-/- mice demonstrated that IL-10 dampens nearly
all known anti-parasite effector mechanisms that operate during polarized Th1 and Th2 re-
sponses. 44 Finally, a recent study of S. haematobium infected children identified IL-10 as a
major risk factor for reinfection after chemotherapy. 45 Together, the results of these studies
suggest that schistosome parasites have evolved an IL-10-dependent mechanism that
down-regulates the host’s immune response early during infection, which maximizes their sur-
vival. However, it is also clear that IL-10 is critical to the survival of the infected host, by
limiting egg-induced liver damage as infection becomes chronic.

Deposition of schistosome eggs into the intestines and liver of infected hosts induces a
vigorous Th2 mediated, circumoval granulomatous response that, if not properly controlled,
can lead to severe immuno-pathology. 38 Glycoconjugates and lipids derived from schistosome
eggs 46-48 drive IL-10 production from B cells, 49 other APCs 48), and Treg cells (Ref 47 and
Hesse M, Piccirillo CA, Belkaid Y, Prufer J, Mentink-Kane M, Leusink M, Cheever AW, Shevach
EM and Wynn TA. The pathogenesis of schistosomiasis is controlled by cooperating
IL-10-producing innate effector and regulatory T cells. Submitted) possibly through a p38
protein kinase dependent signaling cascade. 50 IL-10 levels remain high even weeks after the
egg-induced process is initiated and associate with global T cell hyporesponsiveness, 51-54 counter
regulation of inflammatory Th1 cell populations, 51,55 decreased proliferative capacity of host
cells, 53,56 and control of circumoval granulomatous responses. 55,57,58 Together, these IL-10
dependent activities create an environment that prevents the formation of an over exuberant
and potentially dangerous anti-egg inflammatory response.

Further insight into the regulatory role of IL-10 during schistosome infection has recently
been uncovered through studies involving experimentally infected IL-10 deficient mice and
analysis of data obtained from human immuno-epidemiological field investigations. As IL-10
is associated with the control of the granulomatous response and host cell proliferation during
schistosome infection, it was suggested that this cytokine might be important for
down-modulation of host circumoval immune responses during chronic infection. Neverthe-
less, a longitudinal study using schistosome-infected IL-10 deficient animals demonstrated
that the magnitude of the granulomatous response decreases substantially between wk 8 and
16 of infection, 10 suggesting that IL-10 plays only a minor role in the process of immune
down-modulation. Nevertheless, further examination of the immune responses in these ani-
mals as well as double gene deficient mice (IL-10/IL-12- and IL-10/IL-4- KO) demonstrated
that IL-10 critically controls Th1 and Th2 cytokine and antibody responses as well as immu-
nopathology, especially during the acute phase of disease. 10,59 Deficiencies in IL-10 are also
associated with increased pathology in infected CBA/J mice, 60 IL-4 deficient mice, 61 mice
made tolerant to egg antigens, 62 CD4 + T cell-depleted mice, 63 mice coinfected with S. mansoni
and T. gondii ,64 and in mice immunized with egg antigens and complete Freund’s adjuvant. 65

Furthermore, IL-10 also plays an important role in the development of egg-induced hepatic
fibrosis by regulating IL-13Rα2 expression (decoy receptor for the collagen inducing cytokine
IL-13). 66 Together these studies indicate that IL-10 production during experimental schisto-
somiasis is important for several infection-related pathologies. 67
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Can IL-10 contribute to the control of severe morbidity in human populations? To begin to
answer this question, one recent study has elegantly confirmed the role of IL-10 in urinary
tract morbidity during S. haematobium infection of children and adolescents in Kenya. 68 Here,
the authors demonstrated that a low ratio of IL-10/TNF-α positively correlated with severe
bladder wall pathology in the age- and infection intensity- matched case population. In an-
other study performed on the shores of Lake Albert in Uganda, low levels of IL-10 were posi-
tively associated with increased fibrosis in children infected with S. Mansoni. 69 Additional
studies of this type will contribute to our understanding of the role of IL-10 in human schisto-
somiasis and other helminth infections. 28,70,71 Interestingly, a beneficial side effect of pro-
longed helminth-induced IL-10 production in chronically infected individuals is the ability of
this cytokine to suppress atopy. 72 Given the many critical functions exhibited by IL-10 in this
disease, It is clear that interest on IL-10 and other IL-10 related family members 73 will con-
tinue to grow in the coming years.

IL-10 in Intracellular Protozoan Infection
Due to their capacity to induce vigorous pro-inflammatory cytokine production, protozoan

pathogens such as L. major, 74 T. cruzi 75 and T. gondii 76,77 rapidly stimulate IL-10 responses.
This response quickly establishes an important equilibrium that limits damage to the host but
at the same time prevents complete clearance of the organism so that transmission to new hosts
can occur. Surprisingly, however, little is know about the stimuli that trigger IL-10 production
in these infections or which cell types produce the cytokine. It is now widely believed that
CD4+CD25+ Treg cells represent a major source of the cytokine during infection with L. major.
34,78 While the mechanisms that drive APC to produce IL-10 during L. major infection are not
completely clear, it was found that IgG bound to amastigote forms by means of Fc receptor
ligation can stimulate IL-10 production .79 In the case of T. cruzi, some parasite
membrane-derived glycoinositolphopholipids possess anti-inflammatory activity on macroph-
ages and DC in vitro, but this effect does not appear to be due to induction of IL-10. 80

Interestingly, while DC fail to secrete IL-10 in response to T. gondii stimulation, T cells, mac-
rophages and glial cells produce significant levels of the cytokine during in vivo infections.

IL-10 was originally thought to regulate resistance to protozoan infection mostly through
effector cell deactivation such as by inhibiting NO expression by macrophages 81,82 or by im-
mune deviation of T cell responses towards a type 2 cytokine profile. 83 However, when IL-10-/

- mice became available, this paradigm had to be modified to accommodate a wider range of
effects of this cytokine during infection. T. gondii and T. cruzi infection in IL-10-/- mice re-
sulted in an enhanced Type 1 response and lower parasite burdens as expected, but also revealed
a much more unpredicted outcome of excessive inflammation, which was associated with tis-
sue destruction and a lethal shock-like syndrome characterized by over-production of IL-12,
IFN-γ and TNF. 5,7,84,85 An additional mechanism by which IL-10 can control inflammation is
through direct inhibition of chemokine expression induced by the parasite. 86

L. major infection in IL-10-/- mice results in complete clearance of the parasites from skin
lesions, suggesting a role for this cytokine in the induction of parasite persistence. 34,79 Belkaid
and colleagues reported that CD4+CD25+ Treg cells are the major cell population secreting
IL-10 and, therefore, regulating chronic persistence of leishmania parasites. 78 They hypoth-
esized that direct inhibition of microbicidal activity by the IL-10 produced by this T cell popu-
lation led to the persistence of the parasite. Nevertheless, a role for TGF-β Another
immunomodulatory cytokine produced by Treg cells, has not been formally excluded. TGF-β
has been shown to be associated with macrophage deactivation, inhibition of microbicidal
function and proinflammatory mediators release in several models of protozoan infection. 87-90

Metabolites of the arachidonic acid also constitute another group of anti-inflammatory
mediators that can regulate immunity against protozoa parasite infections. PGE2 production
was reported in mice infected with L. major and T. cruzi. 91-94 A more direct correlation be-
tween production of PGE2 and susceptibility to infection was observed after in vivo inhibition
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of PGE2 synthesis by treatment with cyclooxygenase inhibitors. 91,92 Nevertheless, the most
common cyclooxygenase inhibitors, such as Indomethacin were also shown to inhibit
lipoxygenases, 95 a second class of enzymes that trigger the release of other immunomodulatory
mediators. Leukotriene B4 (LTB4) is one of the products of the lipoxygenase metabolism of the
arachidonic acid, its production had been reported during infection with L. major 93 that ap-
pears to have an enhancing effect over cytokine production, independently of their anti- or
pro-inflammatory profile. IL-10-independent regulation of IL-12 and IFN-γ production was
also reported after stimulation of mice with an extract of tachyzoites of T. gondii, 96 a phenom-
enon called “dendritic cell paralysis”. It was found later that in vivo stimulation with this para-
site extract induced the release of a 5-lipoxygenase-derived eicosanoid, lipoxin A4 (LXA4) and
that 5-lipoxygenase deficient mice can not secrete LXA4 or undergo dendritic cell paralysis. 97

The in vivo relevance of LXA4-mediated control of IL-12 production was studied during infec-
tion of 5-lipoxygenase deficient mice with T. gondii. 98 These animals succumbed to infection
around 30 days post-inoculation with a lower parasite burden, higher serum IL-12 levels and
intense inflammation in the brain with elevated IL-12 production in situ. 98 However, when
analyzed in parallel in an in vitro study, IL-10 but not LXA4, was effective in blocking mac-
rophage microbicidal function, suggesting that these mediators have related but not redundant
effector pathways.

IL-10 in Mycobacterial Infection
Mycobacteria are slow-growing, facultative intracellular bacilli that primarily reside in ph-

agocytes. The immune response to mycobacteria has been analyzed extensively in mouse mod-
els of Mycobacterium tuberculosis, M. bovis Bacillus Calmette-Guérin (BCG) and M. avium
infections. Activation of infected macrophages and control of mycobacterial replication is criti-
cally dependent on IFN-γ produced by T lymphocytes. 99 Some bacilli, however, resist killing
and survive within macrophages in the face of strong T cell responses. Although it is unclear
how this latent infection is maintained, mechanisms that alter host immune responses, such as
the induction of down-regulatory cytokines like IL-10 and TGF-β are thought to contribute to
the persistence of mycobacterial infection. Production of IL-10 is of special interest as a pos-
sible evasion strategy because of its suppressive effects on many known immune functions
required for inhibiting mycobacterial growth, including synthesis of pro-inflammatory cytokines/
mediators, expression of MHC class II and costimulatory molecules. 15

IL-10 is strongly induced at the sites of mycobacterial infection. 100-102 APC, such as mac-
rophages and DC, 103-105 as well as T lymphocytes 106,107 are capable of producing IL-10 in
response to mycobacterial infection. Interestingly, although originally described as a Th2
cytokine, IL-10 also appears to be produced in large quantities by Th1 IFN-γ-producing CD4+

lymphocytes during mycobacterial infection. 108,109

IL-10 inhibits cellular responses induced by mycobacterial infection at multiple levels. Af-
ter activation with IFN-γ__murine macrophages release pro-inflammatory cytokines and NO
to control the intracellular growth of M. tuberculosis and M. bovis. 110-113 This IFN-γ-mediated
bactericidal effect, however, is inhibited in the presence of IL-10. 114 Moreover, IL-10 prevents
TNF-dependent apoptosis of M. tuberculosis-infected macrophages by inhibiting TNF pro-
duction 115 or by inducing the release of TNF receptor 2 that could form nonactive TNF-TNFR2
complexes. 116,117 The induction of macrophage apoptosis may restrict mycobacterial spread-
ing 118 as well as facilitate antigen presentation to T cells 119 thereby contributing to host
control of the infection. Although IL-10 does not exhibit a direct suppressive effect on Th1
cells (see previous section), the cytokine may influence the T cell response to mycobacterial
infection by modulating APC functions. Mycobacterium-induced IL-10 inhibits IL-12 pro-
duction by DC in vitro and in vivo. 104,105 In addition, BCG-infected, IL-10-deficient DC
have been shown to migrate more efficiently to draining lymph nodes compared to cells from
WT mice, suggesting that autocrine IL-10 regulates DC migration in response to BCG infec-
tion in vivo. 104
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As noted above, since IL-10 has a major down-regulatory effect on cell-mediated immunity,
it has been hypothesized that the production of this cytokine promotes the long-term survival
of mycobacteria in infected hosts .120-122 Initial studies, 123,124 which used neutralizing anti-
body to block IL-10 function in vivo, in general supported this concept. However, more recent
studies employing IL-10-/- mice have yielded conflicting results (Table 1). For example, IL-10-/

- mice show increased resistance to M. avium 125 and in some 125-127 but not all 102,128,129

studies display transiently enhanced control of M. tuberculosis and BCG infection. The dis-
crepancy between these studies possibly results from variation in the virulence of the mycobac-
teria, the time-points analysed and most importantly, the route of infection.

Although IL-10-/- mice display only minimally enhanced resistance to mycobacterial infec-
tion, such observation does not rule out a role for IL-10 as one of several redundant mecha-
nisms regulating host resistance to these microorganisms. It has been demonstrated that the
over-expression of IL-10 in transgenic mice results in significantly impaired host resistance to
M. Tuberculosis, 101 BCG 130,131 and M. avium 107 infection. Because the expression of transgenic
IL-10 can be controlled by cell lineage-specific promoters, the relative effect of T cell- vs
APC-derived IL-10 on the host immune response to mycobacterial infection was investigated.
Over-production of IL-10 by T cells ,101,130 macrophages 131 or MHC class II expressing cells
107 lead to dramatically elevated bacterial burdens and impaired macrophage functions. IFN-γ
responses, however, were not markedly decreased in these infected transgenic animals, suggest-
ing normal development of Th1 effector cells. Together, these observations are consistent with
the in vitro findings that IL-10 can over-ride the macrophage activation effects of IFN-γ_ 114

In conclusion, both in vivo and in vitro studies demonstrated that excessive IL-10 produc-
tion can promote intracellular pathogen growth in macrophages and argue that IL-10-mediated
immune down-regulation may contribute to the maintenance of latency in chronic mycobac-
terial infection, possibly as one of several redundant mechanisms.

Table 1. Effects of manipulation of IL-10 level on host resistance to mycobacterial
infection

Mycobacterium Spp. Methods Bacterial Burdensa References

M. avium Anti-IL-10b Reduced Ref. 123, 124

IL-10 KOc Reduced Ref. 125

IL-10 Tgd Increased Ref. 107

BCG IL-10 KO Unchanged Ref. 128

IL-10 KO Transiently reduced Ref. 126, 127

IL-10 Tg Increased Ref. 130, 131

M. tuberculosis IL-10 KO Unchanged Ref. 102, 129

IL-10 KO Transiently reduced Ref. 125

IL-10 Tg Increased Ref. 101

a. Compared to those in WT mice.

b. Treated with antibody specific for IL-10

c. IL-10 deficient mice

d. IL-10 transgenic mice
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The Role of IL-10 in the Regulation of Inflammatory Bowel Disease
Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is

the major chronic inflammatory disease of the intestinal tract. Although the etiology of IBD is
unknown, the intestinal flora is believed to play an important role in its pathogenesis. This is
perhaps best illustrated in experimental models of the disease – e.g., the IL-10-/- mouse model
– in which various immunodeficient animals develop intestinal inflammation when housed in
conventional animal facilities, but not when reared under specific pathogen-free or germ-free
conditions. (reviewed in 132)

The immune mechanisms that regulate intestinal inflammation have been extensively stud-
ied over the years, and data from the severe combined immunodeficiency (SCID) transfer
model have been particularly useful in defining both pathogenic and disease-protective CD4+

T cell responses in IBD. In the SCID transfer model, colitis is induced in T cell-deficient SCID
or Rag-/- recipients by transfer of naïve CD4+ CD45RBhi T cells. 133,134 Cotransfer of the
CD45RBlow memory T cell subset prevents the development of inflammation, defining a popu-
lation of CD4+ Treg cells with disease-suppressive function. 134-136 Subsequent studies have
demonstrated that IL-10 plays a disease-protective role in this model as 1) systemic administra-
tion of recombinant IL-10 prevents development of CD45RBhi-induced colitis, 2) anti-IL-10R
treatment reverses the disease suppression mediated by the CD45RBlow cells, and 3) CD45RBlow

cells from IL-10-/- animals fail to protect from disease. 137,138 Furthermore, CD45RBhi cells
isolated from IL-10 transgenic mice do not induce colitis in SCID recipients and these transgenic
IL-10-secreting CD45RBhi cells are even able to protect from colitis induced by CD45RBhi

cells from WT mice. 139

IL-10 clearly controls intestinal inflammation also in other models of colitis. For example,
IL-10 therapy has been shown beneficial in preventing and/or partially reversing disease in the
IL-10-/- and trinitrobenzene sulphonic acid (TNBS) colitis models. 140,141 Moreover, Treg cell
suppression of T-cell dependent as well as T-cell independent Helicobacter hepaticus-triggered
intestinal inflammation in Rag-/- mice is reversed by anti-IL-10R treatment. 142,143 Interest-
ingly, administration of anti-IL-10R mAb to normal BALB/c mice leads to the induction of
colitis, 144 arguing that IL-10 is required also in intact immunocompetent animals to maintain
intestinal homeostasis. Studies from the H. hepaticus colitis model have further demonstrated
that whereas infected IL-10-/- animals develop a pathogenic Th1 type response, infected WT
mice that are disease free mount an IL-10-dominated immune response against the bacterium.
145 These studies support the hypothesis that in immunocompetent hosts, intestinal flora in-
duces IL-10-secreting CD4+ T cells that prevent pathologic immune responses towards intesti-
nal antigens. The cellular source of the disease-protective IL-10 in most of the colitis models
are indeed believed to be CD4+ Treg cells, 138,142,143,145 although B cell-derived IL-10 has been
reported to suppress intestinal inflammation in TCRα-deficient mice. 146

There are likely multiple mechanisms by which IL-10 exerts its disease-suppressive effect in
IBD. Treg cells, through their production of IL-10, are known to control the expansion of
colitogentic CD4+ T cells. 138,142,143,147,148 Moreover, in addition to its down-regulatory effects
on APC populations, 11,12,149 IL-10 has been shown to promote the development of
IL-10-secreting CD4+ Treg cells in vitro 150 and to enhance the differentiation of DC that
prime such Treg cells. 30 Evidence that IL-10 may prevent intestinal inflammation by acting on
the innate arm of the immune response comes from a report describing the development of
enterocolitis in mice whose macrophages and neutrophils are rendered IL-10 unresponsive by
specific disruption of the Stat3 gene. 151 Likewise, as mentioned above, Treg cells are able to in
an IL-10-dependent fashion suppress the colitis that develops in H. hepaticus-infected Rag-/-

mice on the 129SvEv background, suggesting that cells of nonT lymphocyte compartments are
the targets of IL-10 activity. 143 Besides IL-10, TGF-β plays an important role in protection
against colitis 152-154. The relation between IL-10 and TGF-β in disease suppression is not yet
clear, however studies in the TNBS colitis model suggest that IL-10 acts by down-regulating
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the Th1 response, thereby facilitating TGF-β secretion in the host 155. IL-10 may also enhance
TGF-β receptor type II expression and restore TGF-β responsiveness of activated T cells 156.

Similar to the findings in experimental models, the gut flora has been implicated in the
development of IBD also in humans 157-159. Moreover, while normal individuals display pe-
ripheral tolerance against resident autologous flora mediated by CD4+ T cells secreting IL-10
and TGF-β_ 160 this state is broken in active IBD. 161 In contrast to rodent models, however,
systemic treatment of IBD patients with recombinant human IL-10 has thus far not been very
effective, and other approaches are therefore being developed for use in humans. 162 Encourag-
ing results have been obtained from experimental models using IL-10-secreting Lactococcus
lactis to treat IL-10–/– mice as well as mice exposed to dextran sodium sulfate, 163 and a phase I
clinical trial using IL-10-secreting bacteria in patients with Crohn’s disease is currently under-
way. 162 Taken together, IL-10 clearly has suppressive effects on inflammatory responses in the
intestine and with improved methods for delivery this cytokine may prove beneficial as a treat-
ment for humans with IBD.
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