87 research outputs found

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE\u27s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4σ (5σ) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3σ for almost all true δCP values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-CY exposure for the maximally CP-violating values δCP=±π/2. Additionally, the dependence of DUNE\u27s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP\u27s successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Searching for solar KDAR with DUNE

    Get PDF
    The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions

    Searching for solar KDAR with DUNE

    Get PDF
    The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions

    Determination of optimum dosage of Ovaprim injectionon artificial spawning efficiency of Esox lucius

    Get PDF
    This project was conducted to goal of optimum dosage determination of ovaprim injection to artificial spawning efficiency of Esox lucius. The research implemented by 4 treatments with 3 replicates for each ones. 3 female and 6 male brooders injected in each replicate. The animals in 1, 2 and 3 treatments injected by 10, 20 and 30 µg/kg BW, respectively, and 4th treatment as a control injected with 4 mg/kg BW pituitary gland extract. Average weight of brooders were 1361±521, 1376±954, 1009±160 and 1100 ±422 g in 1, 2, 3 and 4 treatments in females and 689±145, 734±197, 547±118 and 794±238 g in males, respectively. In addition, positive response percent to hormone injection were measured 77.8 ±19.24 , 88.9 ± 19.24 , 55.5 ±50.91 and 55.5 ± 19.24 % in 1, 2, 3 and 4 treatments in female and 94.4 ± 9.58, 88.9 ±19.26 , 83.3±28.86 and 88.9 ± 19.26 % in male brooders, respectively, but there was no significant different between all of treatments (p<0.05). Incubation period from fertilization till hatching step in 7 to 15 ˚C was 5 to 10 days with average of 7±1.5 days. Fertilization content was in 1 to 4 treatments measured 87.1±10, 88.04±7.7, 83.9±5.2 and 72.4±19.7 %, respectively and also the treatments didn’t show any different significantly together (p<0.05). Average percentage of eyed eggs 66.6±15.9 in treat 1, 61.2±22.3 in treat 2, 58.3±10.7 in treat 3 and 56.1±15.04 in treat 4, without any significant different between of them (p<0.05). Hatching of eggs mean were measured 27.41±19.8 in treat 1, 39.53±26.9 in treat 2, 95.18±5.6 in treat 3 and 26.78±12.4 in treat 4, and significant different observed between of them too (p<0.05).In the other hand, mean percent of larvae with active feeding in these treatments were measured 18.77±14.6, 20.1±8.51, 55.6±11.6 and 14.51±7.72 as the treatments had significant different (p<0.05). Also, the best temperature and dosage injection of ovaprim hormone was 9 to 12.5 ˚C and 20µg/kg BW, respectively. The end of trial, from 103740 larvae introduced to earthen pond obtained 8000 fingerlings with weight of 2.68±0.6 g and length of 6.96±0.51 cm

    Design and implementation of the new scintillation light detection system of ICARUS T600

    Full text link
    ICARUS T600 is the far detector of the Short Baseline Neutrino program at Fermilab(USA), which foresees three Liquid Argon Time Projection Chambers along the Booster Neutrino Beam line to search for LSND-like sterile neutrino signal. The T600 detector underwent a significant overhauling process at CERN, introducing new technological developments while maintaining the already achieved performances. The realization of a new liquid argon scintillation light detection system is a primary task of the detector overhaul. As the detector will be subject to a huge flux of cosmic rays, the light detection system should allow the 3D reconstruction of events contributing to the identification of neutrino interactions in the beam spill gate. The design and implementationof the new scintillation light detection system of ICARUS T600 is described

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    Get PDF
    The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 ± 0.6 % and 84.1 ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest
    corecore