164 research outputs found
Recommended from our members
Refinement of the HIVAN1 Susceptibility Locus on Chr. 3A1-A3 via Generation of Sub-Congenic Strains
HIV-1 transgenic mice on the FVB/NJ background (TgFVB) represent a validated model of HIV-associated nephropathy (HIVAN). A major susceptibility locus, HIVAN1, was previously mapped to chromosome 3A1-A3 in a cross between TgFVB and CAST/EiJ (CAST) strains, and introgression of a 51.9 Mb segment encompassing HIVAN1 from CAST into TgFVB resulted in accelerated development of nephropathy. We generated three sub-congenic strains carrying CAST alleles in the proximal or distal regions of the HIVAN1 locus (Sub-II, 3.02–38.93 Mb; Sub-III, 38.45–55.1 Mb and Sub-IV, 47.7–55.1 Mb, build 38). At 5–10 weeks of age, histologic injury and proteinuria did not differ between HIV-1 transgenic Sub-II and TgFVB mice. In contrast, HIV-1 transgenic Sub-III and Sub-IV mice displayed up to 4.4 fold more histopathologic injury and 6-fold more albuminuria compared to TgFVB mice, similar in severity to the full-length congenic mice. The Sub-IV segment defines a maximal 7.4 Mb interval for HIVAN1, and encodes 31 protein coding genes: 15 genes have missense variants differentiating CAST from FVB, and 14 genes show differential renal expression. Of these, Frem1, Foxo1, and Setd7 have been implicated in the pathogenesis of nephropathy. HIVAN1 congenic kidneys are histologically normal without the HIV-1 transgene, yet their global transcriptome is enriched for molecular signatures of apoptosis, adenoviral infection, as well as genes repressed by histone H3 lysine 27 trimethylation, a histone modification associated with HIV-1 life cycle. These data refine HIVAN1to 7.4 Mb and identify latent molecular derangements that may predispose to nephropathy upon exposure to HIV-1
Recommended from our members
A Panel of Serum Biomarkers Differentiates IgA Nephropathy from Other Renal Diseases
Background and Objectives:
There is increasing evidence that galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1-containing immune complexes are important for the pathogenesis of IgA nephropathy (IgAN). In the present study, we assessed a novel noninvasive multi-biomarker approach in the diagnostic test for IgAN.
Materials and Methods:
We compared serum levels of IgA, IgG, Gd-IgA1, Gd-IgA1-specific IgG and Gd-IgA1-specific IgA in 135 IgAN patients, 79 patients with non-IgAN chronic kidney disease (CKD) controls and 106 healthy controls. Serum was collected at the time of kidney biopsy from all IgAN and CKD patients.
Results:
Each serum marker was significantly elevated in IgAN patients compared to CKD (P<0.001) and healthy controls (P<0.001). While 41% of IgAN patients had elevated serum Gd-IgA1 levels, 91% of these patients exhibited Gd-IgA1-specific IgG levels above the 90th percentile for healthy controls (sensitivity 89%, specificity 92%). Although up to 25% of CKD controls, particularly those with immune-mediated glomerular diseases including lupus nephritis, also had elevated serum levels of Gd-IgA1-specific IgG, most IgAN patients had elevated levels of Gd-IgA1-specific antibody of both isotypes. Serum levels of Gd-IgA1-specific IgG were associated with renal histological grading. Furthermore, there was a trend toward higher serum levels of Gd-IgA1-specific IgG in IgAN patients with at least moderate proteinuria (≥1.0 g/g), compared to patients with less proteinuria.
Conclusions
Serum levels of Gd-IgA1-specific antibodies are elevated in most IgAN patients, and their assessment, together with serum levels of Gd-IgA1, improves the specificity of the assays. Our observations suggest that a panel of serum biomarkers may be helpful in differentiating IgAN from other glomerular diseases
Recommended from our members
A Retrotransposon Insertion in the 5' Regulatory Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital Defects in Danforth’s Short Tail Mouse
Danforth's short tail mutant (Sd) mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn) insertion within the highly conserved regulatory sequences upstream of Pancreas Specific Transcription Factor, 1a (Ptf1a). This mutation resulted in up to tenfold increased expression of Ptf1a as compared to wild-type embryos at E9.5 but no detectable changes in the expression levels of other neighboring genes. At E9.5, Sd mutants exhibit ectopic Ptf1a expression in embryonic progenitors of every organ that will manifest a developmental defect: the notochord, the hindgut, and the mesonephric ducts. Moreover, at E 8.5, Sd mutant mice exhibit ectopic Ptf1a expression in the lateral plate mesoderm, tail bud mesenchyme, and in the notochord, preceding the onset of visible defects such as notochord degeneration. The Sd heterozygote phenotype was not ameliorated by Ptf1a haploinsufficiency, further suggesting that the developmental defects result from ectopic expression of Ptf1a. These data identify disruption of the spatio-temporal pattern of Ptf1a expression as the unifying mechanism underlying the multiple congenital defects in Danforth's short tail mouse. This striking example of an enhancer mutation resulting in profound developmental defects suggests that disruption of conserved regulatory elements may also contribute to human malformation syndromes
Recommended from our members
An electronic health record (EHR) log analysis shows limited clinician engagement with unsolicited genetic test results
How clinicians utilize medically actionable genomic information, displayed in the electronic health record (EHR), in medical decision-making remains unknown. Participating sites of the Electronic Medical Records and Genomics (eMERGE) Network have invested resources into EHR integration efforts to enable the display of genetic testing data across heterogeneous EHR systems. To assess clinicians' engagement with unsolicited EHR-integrated genetic test results of eMERGE participants within a large tertiary care academic medical center, we analyzed automatically generated EHR access log data. We found that clinicians viewed only 1% of all the eMERGE genetic test results integrated in the EHR. Using a cluster analysis, we also identified different user traits associated with varying degrees of engagement with the EHR-integrated genomic data. These data contribute important empirical knowledge about clinicians limited and brief engagements with unsolicited EHR-integrated genetic test results of eMERGE participants. Appreciation for user-specific roles provide additional context for why certain users were more or less engaged with the unsolicited results. This study highlights opportunities to use EHR log data as a performance metric to more precisely inform ongoing EHR-integration efforts and decisions about the allocation of informatics resources in genomic research
Predicting Progression of IgA Nephropathy: New Clinical Progression Risk Score
IgA nephropathy (IgAN) is a common cause of end-stage renal disease (ESRD) in Asia. In this study, based on a large cohort of Chinese patients with IgAN, we aim to identify independent predictive factors associated with disease progression to ESRD. We collected retrospective clinical data and renal outcomes on 619 biopsy-diagnosed IgAN patients with a mean follow-up time of 41.3 months. In total, 67 individuals reached the study endpoint defined by occurrence of ESRD necessitating renal replacement therapy. In the fully adjusted Cox proportional hazards model, there were four baseline variables with a significant independent effect on the risk of ESRD. These included: eGFR [HR = 0.96(0.95–0.97)], serum albumin [HR = 0.47(0.32–0.68)], hemoglobin [HR = 0.79(0.72–0.88)], and SBP [HR = 1.02(1.00–1.03)]. Based on these observations, we developed a 4-variable equation of a clinical risk score for disease progression. Our risk score explained nearly 22% of the total variance in the primary outcome. Survival ROC curves revealed that the risk score provided improved prediction of ESRD at 24th, 60th and 120th month of follow-up compared to the three previously proposed risk scores. In summary, our data indicate that IgAN patients with higher systolic blood pressure, lower eGFR, hemoglobin, and albumin levels at baseline are at a greatest risk of progression to ESRD. The new progression risk score calculated based on these four baseline variables offers a simple clinical tool for risk stratification
Genetic studies of IgA nephropathy: past, present, and future
Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and an important cause of kidney disease in young adults. Highly variable clinical presentation and outcome of IgAN suggest that this diagnosis may encompass multiple subsets of disease that are not distinguishable by currently available clinical tools. Marked differences in disease prevalence between individuals of European, Asian, and African ancestry suggest the existence of susceptibility genes that are present at variable frequencies in these populations. Familial forms of IgAN have also been reported throughout the world but are probably underrecognized because associated urinary abnormalities are often intermittent in affected family members. Of the many pathogenic mechanisms reported, defects in IgA1 glycosylation that lead to formation of immune complexes have been consistently demonstrated. Recent data indicates that these IgA1 glycosylation defects are inherited and constitute a heritable risk factor for IgAN. Because of the complex genetic architecture of IgAN, the efforts to map disease susceptibility genes have been difficult, and no causative mutations have yet been identified. Linkage-based approaches have been hindered by disease heterogeneity and lack of a reliable noninvasive diagnostic test for screening family members at risk of IgAN. Many candidate-gene association studies have been published, but most suffer from small sample size and methodological problems, and none of the results have been convincingly validated. New genomic approaches, including genome-wide association studies currently under way, offer promising tools for elucidating the genetic basis of IgAN
Renal Function and Risk Factors of Moderate to Severe Chronic Kidney Disease in Golestan Province, Northeast of Iran
Introduction: The incidence of end-stage renal disease is increasing worldwide. Earlier studies reported high prevalence rates of obesity and hypertension, two major risk factors of chronic kidney disease (CKD), in Golestan Province, Iran. We aimed to investigate prevalence of moderate to severe CKD and its risk factors in the region. Methods: Questionnaire data and blood samples were collected from 3591 participants (≥18 years old) from the general population. Based on serum creatinine levels, glomerular filtration rate (GFR) was estimated. Results: High body mass index (BMI) was common: 35.0 of participants were overweight (BMI 25-29.9) and 24.5 were obese (BMI ≥30). Prevalence of CKD stages 3 to 5 (CKD-S3-5), i.e., GFR <60 mL/min/1.73 m2, was 4.6. The odds ratio (OR) and 95 confidence interval (95 CI) for the risk of CKD-S3-5 associated with every year increase in age was 1.13 (1.11- 1.15). Men were at lower risk of CKD-S3-5 than women (OR = 0.28; 95 CI 0.18-0.45). Obesity (OR = 1.78; 95 CI 1.04-3.05) and self-reported diabetes (OR = 1.70; 95 CI 1.00-2.86), hypertension (OR = 3.16; 95 CI 2.02-4.95), ischemic heart disease (OR = 2.73; 95 CI 1.55-4.81), and myocardial infarction (OR = 2.69; 95 CI 1.14-6.32) were associated with increased risk of CKD-S3-5 in the models adjusted for age and sex. The association persisted for self-reported hypertension even after adjustments for BMI and history of diabetes (OR = 2.85; 95 CI 1.77-4.59). Conclusion: A considerable proportion of inhabitants in Golestan have CKD-S3-5. Screening of individuals with major risk factors of CKD, in order to early detection and treatment of impaired renal function, may be plausible. Further studies on optimal risk prediction of future end-stage renal disease and effectiveness of any screening program are warranted. © 2010 Najafi et al
The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10−12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10−14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10−103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10−49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10−93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10−23 and OR = 3.39, P = 5.2 × 10−82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20–37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk
Recommended from our members
Pilot Study of Return of Genetic Results to Patients in Adult Nephrology
Background and objectives: Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients.
Design, setting, participants and measurements: We developed a Return of Results workflow in collaborations with clinicians for the retrospective re-contact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings.
Results: Using this workflow, we attempted to re-contact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully re-contacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients’ nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for cases requiring extra-nephrologic referrals.
Conclusions: Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care
- …