9 research outputs found

    Interaction of non-equilibrium low temperature plasma with detonation : reduction of cell size and DDT

    No full text
    La thĂšse prĂ©sente une Ă©tude de l’interaction entre les plasmas froids nanosecondes et les ondes de combustion en vue d'amĂ©liorer la dĂ©tonabilitĂ© de mĂ©langes gazeux. Elle rapproche deux domaines de la physique aux Ă©chelles de temps caractĂ©ristiques diffĂ©rentes (nanoseconde vs. micro/milliseconde). Elle vise Ă  dĂ©montrer l'existence d'un lien de causalitĂ© entre la prĂ©-dissociation d’un mĂ©lange gazeux par plasma et la rĂ©duction des temps et longueur caractĂ©ristiques des rĂ©actions de combustion. Cette Ă©tude de l'effet du plasma sur la dĂ©flagration et la dĂ©tonation est expĂ©rimentale et numĂ©rique. AprĂšs des rappels contextuels et des travaux antĂ©rieurs, nous donnons un bref rĂ©sumĂ© des phĂ©nomĂ©nologies de la dĂ©tonation et de la dĂ©flagration dans les gaz et les deux dĂ©finitions la dĂ©tonabilitĂ©, soit, (1) la facilitĂ© pour la dĂ©tonation Ă  se propager dans des conditions donnĂ©es de confinement et (2) la rapiditĂ© avec laquelle la dĂ©tonation s’établit Ă  partir d’une flamme. La premiĂšre est liĂ©e Ă  la taille de la cellule de dĂ©tonation caractĂ©risant l'instabilitĂ© intrinsĂšque de sa zone de rĂ©action Ă©tablie. La deuxiĂšme est liĂ©e Ă  la longueur de transition dĂ©flagration-dĂ©tonation. Nous analysons Ă©galement le plasma nanoseconde et son rĂŽle dans la dissociation d’espĂšces dans un gaz. Nous proposons et testons un schĂ©ma cinĂ©tique, et sa procĂ©dure numĂ©rique, pour simuler l’effet du plasma dans un mĂ©lange combustible. Nous utilisons ces rĂ©sultats de simulation comme paramĂštres initiaux d'un code de calcul de longueurs chimiques de la zone de rĂ©action selon le modĂšle ZND de la dĂ©tonation. Nous rĂ©alisons nos expĂ©riences dans des tubes de section carrĂ©e. Les mĂ©thodes de mesure sont l'imagerie ICCD, la strioscopie, la chimiluminescence, des enregistrements sur plaque Ă  dĂ©pĂŽt de carbone et des capteurs de pression dynamique, et un shunt avec courant de retour (BCS). Dans la sĂ©rie d'expĂ©riences Ă  la cellule de dĂ©tonation, nous dĂ©montrons que l’application d’un plasma nanoseconde devant un front de dĂ©tonation Ă©tabli diminue d'un facteur 2 la largeur des cellules de dĂ©tonation de mĂ©langes H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR Ă  des pressions initiales entre 100 et 200 mbar. Dans la sĂ©rie d'expĂ©riences dĂ©diĂ©e Ă  la TDD, nous dĂ©veloppons un systĂšme d’électrodes multi-canaux pour l’amorçage de la dĂ©flagration. Nous comparons la flamme qu’elle gĂ©nĂšre Ă  celle issue d’une bougie d’allumage classique. La flamme induite par le plasma Ă©volue vers le rĂ©gime de dĂ©tonation plus rapidement, Ă  des distance plus courtes et Ă  des pressions plus basses pour des mĂ©langes H2:O2 Ă  des pressions entre 200 mbar Ă  600 mbar. Pour les deux sĂ©ries d’expĂ©riences nous avons caractĂ©risĂ© le plasma en portant une attention particuliĂšre Ă  son efficacitĂ© (dĂ©pĂŽt d’énergie et homogĂ©nĂ©itĂ©) en fonction de la pression initiale. Nous dĂ©montrons ainsi une causalitĂ© entre plasma, temps d’induction chimique et dĂ©tonabilitĂ©. Notre Ă©tude approfondit la comprĂ©hension du rĂŽle des plasmas nanosecondes couplĂ© aux ondes de combustion. Elle souligne l’intĂ©rĂȘt de poursuivre cette approche nĂ©cessaire Ă  la mise au point de dispositifs plasmas adaptĂ©s aux phĂ©nomĂšnes de dynamique des dĂ©tonations.Mots clĂ©s : Plasma nanoseconde, dĂ©tonation, dĂ©flagration, dĂ©tonabilitĂ©, temps d’induction chimique.The thesis presents a study of the interaction between nanosecond non-equilibrium plasma and combustion waves in order to enhance detonability in gaseous mixtures. Two fields of physics with different characteristic times (nanosecond for plasma vs micro/millisecond for combustion) are linked. The aim is to demonstrate the causality between the pre-dissociation of a gas mixture by plasma action and the reduction of characteristic times and lengths of combustion reactions. The work is both experimental and numerical. After literature review on the interests of plasma for combustion. We summarize the basics of the detonation and deflagration phenomena, and the two definitions for detonability: (1) the capacity for a detonation wave to propagate under specific conditions of confinement and (2) the speed for a detonation wave to be established from a flame. The first is linked to the size of the detonation cell characterizing the intrinsic instability of the reaction zone. The second is linked to the length of the deflagration to detonation transition. We provide basic information on nanosecond non-equilibrium plasma and its effect on the dissociation of species in a gas mixture. We further suggest and test a kinetic scheme to understand the effect of plasma in a combustible mixture. The results are used as input parameters in a calculation of the chemical combustion length characterizing the detonation following the ZND model. We realize our experiments in squared-section detonation tubes. The diagnostic we are using are: ICCD, schlieren, chemiluminescence imaging, soot-plate technic, dynamic pressure sensor, and back current shunt technic. In the series of experiments dedicated to the detonation cell, we show that the application of a nanosecond plasma in front of an established detonation front decreases the detonation cell width by a factor 2 in H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR mixtures for initial pressure between 100 and 200 mbar. For the series of experiments dedicated to the DDT, we designed a plasma high-voltage electrode to ignite a deflagration wave. We compare the flame from the plasma ignition to the flame from a classical spark plug. The flame ignited by plasma achieves the detonation regime faster, for shorter distances and for lower pressure for H2:O2 mixtures and for pressure between 200 bar and 600 mbar. For both experiments we characterized the plasma and we particularly cared for the role of the initial pressure (deposited energy and homogeneity). We demonstrate a causality between plasma, induction time and detonability. The study improves the understanding of the role of nanosecond plasma to enhance combustion waves. It underlines the need to adapt plasma setups to detonation phenomenon.Keywords : Nanosecond plasma, detonation, deflagration, detonabilty, chemical induction time

    Étude de l’interaction des plasmas hors-Ă©quilibre et des dĂ©tonation : rĂ©duction de la largueur des cellules et longueur de transition.

    No full text
    The thesis presents a study of the interaction between nanosecond non-equilibrium plasma and combustion waves in order to enhance detonability in gaseous mixtures. Two fields of physics with different characteristic times (nanosecond for plasma vs micro/millisecond for combustion) are linked. The aim is to demonstrate the causality between the pre-dissociation of a gas mixture by plasma action and the reduction of characteristic times and lengths of combustion reactions. The work is both experimental and numerical. After literature review on the interests of plasma for combustion. We summarize the basics of the detonation and deflagration phenomena, and the two definitions for detonability: (1) the capacity for a detonation wave to propagate under specific conditions of confinement and (2) the speed for a detonation wave to be established from a flame. The first is linked to the size of the detonation cell characterizing the intrinsic instability of the reaction zone. The second is linked to the length of the deflagration to detonation transition. We provide basic information on nanosecond non-equilibrium plasma and its effect on the dissociation of species in a gas mixture. We further suggest and test a kinetic scheme to understand the effect of plasma in a combustible mixture. The results are used as input parameters in a calculation of the chemical combustion length characterizing the detonation following the ZND model. We realize our experiments in squared-section detonation tubes. The diagnostic we are using are: ICCD, schlieren, chemiluminescence imaging, soot-plate technic, dynamic pressure sensor, and back current shunt technic. In the series of experiments dedicated to the detonation cell, we show that the application of a nanosecond plasma in front of an established detonation front decreases the detonation cell width by a factor 2 in H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR mixtures for initial pressure between 100 and 200 mbar. For the series of experiments dedicated to the DDT, we designed a plasma high-voltage electrode to ignite a deflagration wave. We compare the flame from the plasma ignition to the flame from a classical spark plug. The flame ignited by plasma achieves the detonation regime faster, for shorter distances and for lower pressure for H2:O2 mixtures and for pressure between 200 bar and 600 mbar. For both experiments we characterized the plasma and we particularly cared for the role of the initial pressure (deposited energy and homogeneity). We demonstrate a causality between plasma, induction time and detonability. The study improves the understanding of the role of nanosecond plasma to enhance combustion waves. It underlines the need to adapt plasma setups to detonation phenomenon.Keywords : Nanosecond plasma, detonation, deflagration, detonabilty, chemical induction time.La thĂšse prĂ©sente une Ă©tude de l’interaction entre les plasmas froids nanosecondes et les ondes de combustion en vue d'amĂ©liorer la dĂ©tonabilitĂ© de mĂ©langes gazeux. Elle rapproche deux domaines de la physique aux Ă©chelles de temps caractĂ©ristiques diffĂ©rentes (nanoseconde vs. micro/milliseconde). Elle vise Ă  dĂ©montrer l'existence d'un lien de causalitĂ© entre la prĂ©-dissociation d’un mĂ©lange gazeux par plasma et la rĂ©duction des temps et longueur caractĂ©ristiques des rĂ©actions de combustion. Cette Ă©tude de l'effet du plasma sur la dĂ©flagration et la dĂ©tonation est expĂ©rimentale et numĂ©rique. AprĂšs des rappels contextuels et des travaux antĂ©rieurs, nous donnons un bref rĂ©sumĂ© des phĂ©nomĂ©nologies de la dĂ©tonation et de la dĂ©flagration dans les gaz et les deux dĂ©finitions la dĂ©tonabilitĂ©, soit, (1) la facilitĂ© pour la dĂ©tonation Ă  se propager dans des conditions donnĂ©es de confinement et (2) la rapiditĂ© avec laquelle la dĂ©tonation s’établit Ă  partir d’une flamme. La premiĂšre est liĂ©e Ă  la taille de la cellule de dĂ©tonation caractĂ©risant l'instabilitĂ© intrinsĂšque de sa zone de rĂ©action Ă©tablie. La deuxiĂšme est liĂ©e Ă  la longueur de transition dĂ©flagration-dĂ©tonation. Nous analysons Ă©galement le plasma nanoseconde et son rĂŽle dans la dissociation d’espĂšces dans un gaz. Nous proposons et testons un schĂ©ma cinĂ©tique, et sa procĂ©dure numĂ©rique, pour simuler l’effet du plasma dans un mĂ©lange combustible. Nous utilisons ces rĂ©sultats de simulation comme paramĂštres initiaux d'un code de calcul de longueurs chimiques de la zone de rĂ©action selon le modĂšle ZND de la dĂ©tonation. Nous rĂ©alisons nos expĂ©riences dans des tubes de section carrĂ©e. Les mĂ©thodes de mesure sont l'imagerie ICCD, la strioscopie, la chimiluminescence, des enregistrements sur plaque Ă  dĂ©pĂŽt de carbone et des capteurs de pression dynamique, et un shunt avec courant de retour (BCS). Dans la sĂ©rie d'expĂ©riences Ă  la cellule de dĂ©tonation, nous dĂ©montrons que l’application d’un plasma nanoseconde devant un front de dĂ©tonation Ă©tabli diminue d'un facteur 2 la largeur des cellules de dĂ©tonation de mĂ©langes H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR Ă  des pressions initiales entre 100 et 200 mbar. Dans la sĂ©rie d'expĂ©riences dĂ©diĂ©e Ă  la TDD, nous dĂ©veloppons un systĂšme d’électrodes multi-canaux pour l’amorçage de la dĂ©flagration. Nous comparons la flamme qu’elle gĂ©nĂšre Ă  celle issue d’une bougie d’allumage classique. La flamme induite par le plasma Ă©volue vers le rĂ©gime de dĂ©tonation plus rapidement, Ă  des distance plus courtes et Ă  des pressions plus basses pour des mĂ©langes H2:O2 Ă  des pressions entre 200 mbar Ă  600 mbar. Pour les deux sĂ©ries d’expĂ©riences nous avons caractĂ©risĂ© le plasma en portant une attention particuliĂšre Ă  son efficacitĂ© (dĂ©pĂŽt d’énergie et homogĂ©nĂ©itĂ©) en fonction de la pression initiale. Nous dĂ©montrons ainsi une causalitĂ© entre plasma, temps d’induction chimique et dĂ©tonabilitĂ©. Notre Ă©tude approfondit la comprĂ©hension du rĂŽle des plasmas nanosecondes couplĂ© aux ondes de combustion. Elle souligne l’intĂ©rĂȘt de poursuivre cette approche nĂ©cessaire Ă  la mise au point de dispositifs plasmas adaptĂ©s aux phĂ©nomĂšnes de dynamique des dĂ©tonations.Mots clĂ©s : Plasma nanoseconde, dĂ©tonation, dĂ©flagration, dĂ©tonabilitĂ©, temps d’induction chimique

    Étude de l’interaction des plasmas hors-Ă©quilibre et des dĂ©tonation : rĂ©duction de la largueur des cellules et longueur de transition.

    No full text
    The thesis presents a study of the interaction between nanosecond non-equilibrium plasma and combustion waves in order to enhance detonability in gaseous mixtures. Two fields of physics with different characteristic times (nanosecond for plasma vs micro/millisecond for combustion) are linked. The aim is to demonstrate the causality between the pre-dissociation of a gas mixture by plasma action and the reduction of characteristic times and lengths of combustion reactions. The work is both experimental and numerical. After literature review on the interests of plasma for combustion. We summarize the basics of the detonation and deflagration phenomena, and the two definitions for detonability: (1) the capacity for a detonation wave to propagate under specific conditions of confinement and (2) the speed for a detonation wave to be established from a flame. The first is linked to the size of the detonation cell characterizing the intrinsic instability of the reaction zone. The second is linked to the length of the deflagration to detonation transition. We provide basic information on nanosecond non-equilibrium plasma and its effect on the dissociation of species in a gas mixture. We further suggest and test a kinetic scheme to understand the effect of plasma in a combustible mixture. The results are used as input parameters in a calculation of the chemical combustion length characterizing the detonation following the ZND model. We realize our experiments in squared-section detonation tubes. The diagnostic we are using are: ICCD, schlieren, chemiluminescence imaging, soot-plate technic, dynamic pressure sensor, and back current shunt technic. In the series of experiments dedicated to the detonation cell, we show that the application of a nanosecond plasma in front of an established detonation front decreases the detonation cell width by a factor 2 in H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR mixtures for initial pressure between 100 and 200 mbar. For the series of experiments dedicated to the DDT, we designed a plasma high-voltage electrode to ignite a deflagration wave. We compare the flame from the plasma ignition to the flame from a classical spark plug. The flame ignited by plasma achieves the detonation regime faster, for shorter distances and for lower pressure for H2:O2 mixtures and for pressure between 200 bar and 600 mbar. For both experiments we characterized the plasma and we particularly cared for the role of the initial pressure (deposited energy and homogeneity). We demonstrate a causality between plasma, induction time and detonability. The study improves the understanding of the role of nanosecond plasma to enhance combustion waves. It underlines the need to adapt plasma setups to detonation phenomenon.Keywords : Nanosecond plasma, detonation, deflagration, detonabilty, chemical induction time.La thĂšse prĂ©sente une Ă©tude de l’interaction entre les plasmas froids nanosecondes et les ondes de combustion en vue d'amĂ©liorer la dĂ©tonabilitĂ© de mĂ©langes gazeux. Elle rapproche deux domaines de la physique aux Ă©chelles de temps caractĂ©ristiques diffĂ©rentes (nanoseconde vs. micro/milliseconde). Elle vise Ă  dĂ©montrer l'existence d'un lien de causalitĂ© entre la prĂ©-dissociation d’un mĂ©lange gazeux par plasma et la rĂ©duction des temps et longueur caractĂ©ristiques des rĂ©actions de combustion. Cette Ă©tude de l'effet du plasma sur la dĂ©flagration et la dĂ©tonation est expĂ©rimentale et numĂ©rique. AprĂšs des rappels contextuels et des travaux antĂ©rieurs, nous donnons un bref rĂ©sumĂ© des phĂ©nomĂ©nologies de la dĂ©tonation et de la dĂ©flagration dans les gaz et les deux dĂ©finitions la dĂ©tonabilitĂ©, soit, (1) la facilitĂ© pour la dĂ©tonation Ă  se propager dans des conditions donnĂ©es de confinement et (2) la rapiditĂ© avec laquelle la dĂ©tonation s’établit Ă  partir d’une flamme. La premiĂšre est liĂ©e Ă  la taille de la cellule de dĂ©tonation caractĂ©risant l'instabilitĂ© intrinsĂšque de sa zone de rĂ©action Ă©tablie. La deuxiĂšme est liĂ©e Ă  la longueur de transition dĂ©flagration-dĂ©tonation. Nous analysons Ă©galement le plasma nanoseconde et son rĂŽle dans la dissociation d’espĂšces dans un gaz. Nous proposons et testons un schĂ©ma cinĂ©tique, et sa procĂ©dure numĂ©rique, pour simuler l’effet du plasma dans un mĂ©lange combustible. Nous utilisons ces rĂ©sultats de simulation comme paramĂštres initiaux d'un code de calcul de longueurs chimiques de la zone de rĂ©action selon le modĂšle ZND de la dĂ©tonation. Nous rĂ©alisons nos expĂ©riences dans des tubes de section carrĂ©e. Les mĂ©thodes de mesure sont l'imagerie ICCD, la strioscopie, la chimiluminescence, des enregistrements sur plaque Ă  dĂ©pĂŽt de carbone et des capteurs de pression dynamique, et un shunt avec courant de retour (BCS). Dans la sĂ©rie d'expĂ©riences Ă  la cellule de dĂ©tonation, nous dĂ©montrons que l’application d’un plasma nanoseconde devant un front de dĂ©tonation Ă©tabli diminue d'un facteur 2 la largeur des cellules de dĂ©tonation de mĂ©langes H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR Ă  des pressions initiales entre 100 et 200 mbar. Dans la sĂ©rie d'expĂ©riences dĂ©diĂ©e Ă  la TDD, nous dĂ©veloppons un systĂšme d’électrodes multi-canaux pour l’amorçage de la dĂ©flagration. Nous comparons la flamme qu’elle gĂ©nĂšre Ă  celle issue d’une bougie d’allumage classique. La flamme induite par le plasma Ă©volue vers le rĂ©gime de dĂ©tonation plus rapidement, Ă  des distance plus courtes et Ă  des pressions plus basses pour des mĂ©langes H2:O2 Ă  des pressions entre 200 mbar Ă  600 mbar. Pour les deux sĂ©ries d’expĂ©riences nous avons caractĂ©risĂ© le plasma en portant une attention particuliĂšre Ă  son efficacitĂ© (dĂ©pĂŽt d’énergie et homogĂ©nĂ©itĂ©) en fonction de la pression initiale. Nous dĂ©montrons ainsi une causalitĂ© entre plasma, temps d’induction chimique et dĂ©tonabilitĂ©. Notre Ă©tude approfondit la comprĂ©hension du rĂŽle des plasmas nanosecondes couplĂ© aux ondes de combustion. Elle souligne l’intĂ©rĂȘt de poursuivre cette approche nĂ©cessaire Ă  la mise au point de dispositifs plasmas adaptĂ©s aux phĂ©nomĂšnes de dynamique des dĂ©tonations.Mots clĂ©s : Plasma nanoseconde, dĂ©tonation, dĂ©flagration, dĂ©tonabilitĂ©, temps d’induction chimique

    Étude de l’interaction des plasmas hors-Ă©quilibre et des dĂ©tonation : rĂ©duction de la largueur des cellules et longueur de transition.

    No full text
    The thesis presents a study of the interaction between nanosecond non-equilibrium plasma and combustion waves in order to enhance detonability in gaseous mixtures. Two fields of physics with different characteristic times (nanosecond for plasma vs micro/millisecond for combustion) are linked. The aim is to demonstrate the causality between the pre-dissociation of a gas mixture by plasma action and the reduction of characteristic times and lengths of combustion reactions. The work is both experimental and numerical. After literature review on the interests of plasma for combustion. We summarize the basics of the detonation and deflagration phenomena, and the two definitions for detonability: (1) the capacity for a detonation wave to propagate under specific conditions of confinement and (2) the speed for a detonation wave to be established from a flame. The first is linked to the size of the detonation cell characterizing the intrinsic instability of the reaction zone. The second is linked to the length of the deflagration to detonation transition. We provide basic information on nanosecond non-equilibrium plasma and its effect on the dissociation of species in a gas mixture. We further suggest and test a kinetic scheme to understand the effect of plasma in a combustible mixture. The results are used as input parameters in a calculation of the chemical combustion length characterizing the detonation following the ZND model. We realize our experiments in squared-section detonation tubes. The diagnostic we are using are: ICCD, schlieren, chemiluminescence imaging, soot-plate technic, dynamic pressure sensor, and back current shunt technic. In the series of experiments dedicated to the detonation cell, we show that the application of a nanosecond plasma in front of an established detonation front decreases the detonation cell width by a factor 2 in H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR mixtures for initial pressure between 100 and 200 mbar. For the series of experiments dedicated to the DDT, we designed a plasma high-voltage electrode to ignite a deflagration wave. We compare the flame from the plasma ignition to the flame from a classical spark plug. The flame ignited by plasma achieves the detonation regime faster, for shorter distances and for lower pressure for H2:O2 mixtures and for pressure between 200 bar and 600 mbar. For both experiments we characterized the plasma and we particularly cared for the role of the initial pressure (deposited energy and homogeneity). We demonstrate a causality between plasma, induction time and detonability. The study improves the understanding of the role of nanosecond plasma to enhance combustion waves. It underlines the need to adapt plasma setups to detonation phenomenon.Keywords : Nanosecond plasma, detonation, deflagration, detonabilty, chemical induction time.La thĂšse prĂ©sente une Ă©tude de l’interaction entre les plasmas froids nanosecondes et les ondes de combustion en vue d'amĂ©liorer la dĂ©tonabilitĂ© de mĂ©langes gazeux. Elle rapproche deux domaines de la physique aux Ă©chelles de temps caractĂ©ristiques diffĂ©rentes (nanoseconde vs. micro/milliseconde). Elle vise Ă  dĂ©montrer l'existence d'un lien de causalitĂ© entre la prĂ©-dissociation d’un mĂ©lange gazeux par plasma et la rĂ©duction des temps et longueur caractĂ©ristiques des rĂ©actions de combustion. Cette Ă©tude de l'effet du plasma sur la dĂ©flagration et la dĂ©tonation est expĂ©rimentale et numĂ©rique. AprĂšs des rappels contextuels et des travaux antĂ©rieurs, nous donnons un bref rĂ©sumĂ© des phĂ©nomĂ©nologies de la dĂ©tonation et de la dĂ©flagration dans les gaz et les deux dĂ©finitions la dĂ©tonabilitĂ©, soit, (1) la facilitĂ© pour la dĂ©tonation Ă  se propager dans des conditions donnĂ©es de confinement et (2) la rapiditĂ© avec laquelle la dĂ©tonation s’établit Ă  partir d’une flamme. La premiĂšre est liĂ©e Ă  la taille de la cellule de dĂ©tonation caractĂ©risant l'instabilitĂ© intrinsĂšque de sa zone de rĂ©action Ă©tablie. La deuxiĂšme est liĂ©e Ă  la longueur de transition dĂ©flagration-dĂ©tonation. Nous analysons Ă©galement le plasma nanoseconde et son rĂŽle dans la dissociation d’espĂšces dans un gaz. Nous proposons et testons un schĂ©ma cinĂ©tique, et sa procĂ©dure numĂ©rique, pour simuler l’effet du plasma dans un mĂ©lange combustible. Nous utilisons ces rĂ©sultats de simulation comme paramĂštres initiaux d'un code de calcul de longueurs chimiques de la zone de rĂ©action selon le modĂšle ZND de la dĂ©tonation. Nous rĂ©alisons nos expĂ©riences dans des tubes de section carrĂ©e. Les mĂ©thodes de mesure sont l'imagerie ICCD, la strioscopie, la chimiluminescence, des enregistrements sur plaque Ă  dĂ©pĂŽt de carbone et des capteurs de pression dynamique, et un shunt avec courant de retour (BCS). Dans la sĂ©rie d'expĂ©riences Ă  la cellule de dĂ©tonation, nous dĂ©montrons que l’application d’un plasma nanoseconde devant un front de dĂ©tonation Ă©tabli diminue d'un facteur 2 la largeur des cellules de dĂ©tonation de mĂ©langes H2:O2:Ar, H2:O2, CH4:H2:O2:Ar et CH4:O2:AR Ă  des pressions initiales entre 100 et 200 mbar. Dans la sĂ©rie d'expĂ©riences dĂ©diĂ©e Ă  la TDD, nous dĂ©veloppons un systĂšme d’électrodes multi-canaux pour l’amorçage de la dĂ©flagration. Nous comparons la flamme qu’elle gĂ©nĂšre Ă  celle issue d’une bougie d’allumage classique. La flamme induite par le plasma Ă©volue vers le rĂ©gime de dĂ©tonation plus rapidement, Ă  des distance plus courtes et Ă  des pressions plus basses pour des mĂ©langes H2:O2 Ă  des pressions entre 200 mbar Ă  600 mbar. Pour les deux sĂ©ries d’expĂ©riences nous avons caractĂ©risĂ© le plasma en portant une attention particuliĂšre Ă  son efficacitĂ© (dĂ©pĂŽt d’énergie et homogĂ©nĂ©itĂ©) en fonction de la pression initiale. Nous dĂ©montrons ainsi une causalitĂ© entre plasma, temps d’induction chimique et dĂ©tonabilitĂ©. Notre Ă©tude approfondit la comprĂ©hension du rĂŽle des plasmas nanosecondes couplĂ© aux ondes de combustion. Elle souligne l’intĂ©rĂȘt de poursuivre cette approche nĂ©cessaire Ă  la mise au point de dispositifs plasmas adaptĂ©s aux phĂ©nomĂšnes de dynamique des dĂ©tonations.Mots clĂ©s : Plasma nanoseconde, dĂ©tonation, dĂ©flagration, dĂ©tonabilitĂ©, temps d’induction chimique

    Experimental study of pulsed microwave discharges at pressures ranging over five orders of magnitude

    No full text
    International audienceMicrowave discharge igniter (MDI) is a discharge system developed to initiate combustion in automotive engines. The MDI uses a sequence of N = 700 microwave (2.45 GHz) pulses 100 ns in duration separated by 1 μs. The initial breakdown is provided by the first microwave pulse, 5 μs in duration. The aim of pulsing the microwave signal is to keep an optimal combination of parameters when, even at elevated pressures, (i) the discharge propagates over the largest possible volume; (ii) the plasma is non-equilibrium. Properties of plasma produced by MDI igniter in non-combustible gas mixtures at ambient gas temperature and gas pressure in the range between 0.2 mbar and 8 bar were studied experimentally. Discharge spatial structure was analyzed with the help of time-resolved ICCD imaging. Near-UV optical emission spectra taken in different pulses provided the information about rotational and vibrational temperatures. The electric field was estimated on the basis of ratio of emission of the second positive and the first negative systems of molecular nitrogen

    Effect of non-equilibrium plasma on decreasing the detonation cell size

    No full text
    International audienceThe effect of a volumetric nanosecond discharge on detonation cell size was demonstrated experimentally in a detonation tube test rig. The experiments were performed in CH 4 :O 2 :Ar=1:2:2 mixture, at initial pressure 180 mbar and ambient temperature. The plasma was generated by two consecutive pulses of −50 and −32 kV amplitude on the high-voltage electrode and 25 ns pulse duration. The analysis of the detonation cell size with and without plasma generation was performed via sootedplate technique. The detonation cell size was reduced by a factor of 1.5 − 2, while passing through the region of the discharge

    Parametric study of a moderate pressure nanosecond discharge to reduce detonation cell width

    No full text
    International audienceThe effect of a volumetric nanosecond discharge on detonation cell size was demonstrated experimentally in a detonation tube test rig. The experiments were performed in CH 4 :O 2 :Ar=1:2:2 mixture, at initial pressure 180 mbar and ambient temperature. The detonation wave was initiated in a 3.6-m long, 50 × 50-mm 2 square cross section tube, and entered the measuring section where the electrode system was installed to produce a double-pulse discharge ahead of the detonation front. The triggering of the discharge was synchronized with the arrival of the detonation front to the diagnostic chamber. The plasma was generated by two consecutive pulses of −50 and −32 kV amplitude on the high-voltage electrode and 25 ns pulse duration. It was shown that the plasma fills the entire interelectrode space. The analysis of the detonation cell size with and without plasma generation was performed via sooted-plate technique. Production of atoms and radicals in the discharge triggered combustion chemistry decreasing the ignition delay time. As a result, the detonation cell size was reduced by a factor of 1.5 − 2, while passing through the region of the discharge
    corecore